
Course Organization Introduction

CSE 307: Principles of Programming Languages
Spring 2015

R. Sekar

1 / 34

Course Organization Introduction

Topics

1. Course Organization

Info and Support

Course Description

Text

Grading

Cheating

2. Introduction

Languages and Characteristics

Paradigms

History

Design Criteria

2 / 34

Course Organization Introduction Info and Support Course Description Text Grading Cheating

Section 1

Course Organization

3 / 34

Course Organization Introduction Info and Support Course Description Text Grading Cheating

Course information sources

Course web page: http://seclab.cs.sunysb.edu/sekar/cse307/

(Redirected from http://www.cs.sunysb.edu/~cse307/)

Used for general information about the course

Instructor and TA information

O�ce hours

Lecture notes

Blackboard: Will be used for announcements, emails, assignment submissions, posting

grades, etc.

4 / 34

Course Organization Introduction Info and Support Course Description Text Grading Cheating

Course Support

Check the course web pages and Blackboard announcements.

Follow the discussion forum for the course on Blackboard.
Post your questions relating to homeworks (or any other topic discussed in class) on this
forum.
But check the course web page and previous forum postings before making a new one, as the

question may have already been answered.

Do not use email except for questions of personal nature.

Come to my o�ce hours or that of the TAs.

Grading related questions: send email to the TA who graded your homework.

5 / 34

Course Organization Introduction Info and Support Course Description Text Grading Cheating

Course Objectives

Develop a fundamental understanding of programming language concepts.

Acquire tools to choose, use, evaluate and design programming languages.

Learn di�erent flavors of programming languages.

6 / 34

http://seclab.cs.sunysb.edu/sekar/cse307/
http://www.cs.sunysb.edu/~cse307/

Course Organization Introduction Info and Support Course Description Text Grading Cheating

What will you learn in CSE 307?

Programming Language Concepts

Values, Binding, Scopes, Naming, . . .

Programming Paradigms

Object-oriented, Functional, Logic

Runtime environments, Interpreters and Compilers

7 / 34

Course Organization Introduction Info and Support Course Description Text Grading Cheating

Programming Languages Covered

Imperative: C, [Pascal]

Object-oriented: C++, Javascript, Java

Functional: OCAML, Use of functional style in Python, [Haskell]

Logic: Prolog

8 / 34

Course Organization Introduction Info and Support Course Description Text Grading Cheating

Textbooks

Required:

Kenneth C. Louden, Programing Languages Principles and Practice, Second Edition,

Thomson Publishers.

You can buy the 3rd edition if you cannot find the 2nd edition

But I find used versions of the second edition on Amazon for $1 or so!

9 / 34

Course Organization Introduction Info and Support Course Description Text Grading Cheating

How the course is run

Approximately one homework every two weeks

Non-programming homeworks about programming language concepts.

Short programming assignments to learn programming in new languages.

Larger (around 500 lines) programming assignments: writing interpreters to solidify the

understanding programming language concepts.

You can skip or drop one assignment in the whole semester

Grading (approximate)

70% exams: Two midterms (15% to 18% each) plus Final (approx. 35%)

30% homeworks, assignments, quizzes and class participation.

To receive a good grade, you must do well individually in each component

10 / 34

Course Organization Introduction Info and Support Course Description Text Grading Cheating

Academic Integrity

Do not copy from any one, or any source (on the Internet or elsewhere)

The penalty for cheating is an F-grade, plus referral to graduate school. No exception,

regardless of the “amount” of copying involved.

In addition, if you cheat, you will be unprepared for the exams, and will do poorly.

To encourage you to work on your own, we scale up assignment scores by about 10%

to 25%

11 / 34

Course Organization Introduction Languages and Characteristics Paradigms History Design Criteria

Section 2

Introduction

12 / 34

Course Organization Introduction Languages and Characteristics Paradigms History Design Criteria

Language

The words, their pronunciation, and the methods of combining them used and

understood by a community.

A formal system of signs and symbols including rules for the formation and

transformation of admissible expressions

— Merriam-Webster Dictionary

Programming Language: (from the textbook)

A notation for describing computation in machine-readable and human-readable form

13 / 34

Course Organization Introduction Languages and Characteristics Paradigms History Design Criteria

Programming Languages

Low-level languages

e.g. assembly languages

closer to the level of the machine

High-level languages

e.g. Java

closer to the level of the human programmer

Special-purpose languages

e.g. SQL

Tailored for use in a particular setting

. . . in constrast to general purpose languages

14 / 34

Course Organization Introduction Languages and Characteristics Paradigms History Design Criteria

Characteristics of programming languages

Human Readability:

Use of abstractions

. . . to move the programmer from the domain of the machine to the domain of the

problem being solved

Di�erent languages di�er in the abstractions they facilitate

Machine Readability:

Recognizers (syntax checkers)

Compilers and interpreters

15 / 34

Course Organization Introduction Languages and Characteristics Paradigms History Design Criteria

Data Abstraction

Basic Data Abstraction:

Common, “atomic” data values such as integers;

places to store such values (e.g. “variables”);

notation to indicate the association between places, their names and values.

Structured Data Abstraction:

Group or collection of related data values

e.g. arrays, records, etc.

Unit Data Abstraction:

Encapsulating related data values and structures into induvidual program units

e.g. modules and packages.

16 / 34

Course Organization Introduction Languages and Characteristics Paradigms History Design Criteria

Control Abstraction

Basic Control Abstraction:

Most fundamental of control (e.g. data movement)

Statements (e.g. x = x + 1)

Structured Control Abstraction:

Combine basic controls into more powerful groups

Control structures such as if, while, case/switch etc.

Abstraction of a group (sequence) of actions into a single action (e.g. procedures and

methods)

Unit Control Abstraction:

Same as in data abstraction: packages and modules

17 / 34

Course Organization Introduction Languages and Characteristics Paradigms History Design Criteria

The study of languages

Language Definition

Syntax (structure)

Semantics (meaning)

Language Features

Control structures

Data structures

Extensions

Language Processing

Translation

Interpretation

Runtime environment

Language Design

Understandability

Simplicity and Expressiveness

E�ciency

Portability

Security/Error-checking

18 / 34

Course Organization Introduction Languages and Characteristics Paradigms History Design Criteria

Language Paradigms

Procedural: Fortran, Algol, PL-1, Pascal, C, . . .

Object-oriented: Simula67, Smalltalk, Ada, Modula-3, C++, Java, . . .

Functional: LISP, ISWIM, Scheme, FP, ML, Haskell, Gofer, . . .

Logic: Prolog, SetL, CLP, Mercury, . . .

Scripting / Domain-Specific: sh, AWK, Perl, Tcl/Tk, Postscript, JavaScript, . . .

19 / 34

Course Organization Introduction Languages and Characteristics Paradigms History Design Criteria

The more familiar paradigms

Imperative/procedural languages

Programs are written with Control as the key element.

Languages simply abstract the operational aspects of a machine.

e.g. Pascal, C, Algol.

Object-oriented languages

Programs are written with Data (objects) as the key element.

Languages provide mechanisms to associate operations with specific data values (methods)

e.g. C++, Java.

20 / 34

Course Organization Introduction Languages and Characteristics Paradigms History Design Criteria

Less familiar paradigms

Functional languages

Programs are written with focus on operations (functions) on data values

Functions combined using composition, evaluated at particular values using application.

Usually have no notion of assignments

let rec gcd m n =

let

r = m mod n

in

if r = 0

then n

else gcd n r
21 / 34

Course Organization Introduction Languages and Characteristics Paradigms History Design Criteria

Even less familiar paradigms

Logic languages

Programs weitten with focus on relationships between data values.

Programs specify “what” must be true about a problem’s solution; the programming system

takes care of achieving the specifications.

Declarative programming

mother(mary, joe).

father(sam, joe).

mother(jane, sam).

father(rob, sam).

...

parent(P, C) :- mother(P, C).

parent(P, C) :- father(P, C).

ancestor(A, D) :- parent(A, D).

ancestor(A, D) :- parent(A, C),

ancestor(C, D).

22 / 34

Course Organization Introduction Languages and Characteristics Paradigms History Design Criteria

History of Programming Languages (1)

1940s: Programming by “wiring,” machine languages, assembly languages

1950s: FORTRAN, COBOL, LISP, APL

1960s: PL/I, Algol68, SNOBOL, Simula67, BASIC

1970s: Pascal, C, SML, Scheme, Smalltalk

1980s: Ada, Modula 2, Prolog, C++, Ei�el

1990s: Java, Haskell

2000s: Javascript, PHP, Python, ...

23 / 34

Course Organization Introduction Languages and Characteristics Paradigms History Design Criteria

History of Programming Languages (2)

FORTRAN: the grandfather of high-level languages

Emphasis on scientific computing

Simple data structures (arrays)

Control structures (goto, do-loops, subroutines)

ALGOL: where most modern language concepts were first developed

Free-form syntax

Block-structure

Type declarations

Recursion

24 / 34

Course Organization Introduction Languages and Characteristics Paradigms History Design Criteria

History of Programming Languages (3)

LISP: List-processing language — Focus on non-numeric (symbolic) computation

Lists as a “universal” data structure

Polymorphism

Automatic memory management

Mother of modern functional languages

Descedants include Scheme, Standard ML and Haskell

Some of these languages have greatly influenced more recent languages such as Python,

Javascript, and Scala

25 / 34

Course Organization Introduction Languages and Characteristics Paradigms History Design Criteria

History of Programming Languages (4)

Simula 67:

Object orientation (classes/instances)

Precursor of all modern OO-languages

Smalltalk

C++

Java

Prolog:

Back-tracking

Unification/logic variables

26 / 34

Course Organization Introduction Languages and Characteristics Paradigms History Design Criteria

History of Programming Languages (5)

C: “High-level assembly language”

Simplicity

Low-level control that enables OSes to be implemented mostly in C

Registers and I/O

Memory management

Support for interspersing assembly code

Java: A simple, cleaner alternative to C++

Reliability: Robustness/Security built from ground-up

Internet focused: “write once, run every where”

Bundled with runtime libraries providing rich functionality

Draws on some concepts from functional languages
27 / 34

Course Organization Introduction Languages and Characteristics Paradigms History Design Criteria

Programming Language Design

The primary purpose of a programming language is to support

the construction of reliable (and e�cient) software

Language Design Criteria:

E�ciency was the singular focus in the early days (1940s and 1950s).

Readability

Complexity

Reliability

Expressiveness

Maintainability

Portability
28 / 34

Course Organization Introduction Languages and Characteristics Paradigms History Design Criteria

Expressiveness

Ability to write programs focussing on the problem, not on the machine used to solve

it.

Ability to express complex processes and structures.

Support for data and control abstraction

Expressiveness 6= conciseness!

e.g. while (*s++ = *t++);

29 / 34

Course Organization Introduction Languages and Characteristics Paradigms History Design Criteria

Simplicity and Extensibility

Simplicity: ability to express programs concisely, in a manner that is easy to write,

read, and understand.

Simplicity of learning vs. simplicity of programming vs. simplicity of understanding

Small set of basic concepts

Constructs can be expressed and used only in one way.

Extensibility: ability to add new features to the language

Data type definition in Pascal, Modula, Ada, . . .

Definition of new operators (or reuse existing operators such as ‘+’) in SML, Prolog,

Haskell, . . .

30 / 34

Course Organization Introduction Languages and Characteristics Paradigms History Design Criteria

Regularity

Generality: Operations/constructs available for all closely related cases:

in C: Compare two integers with == but not two structures/arrays

in Java: Can make collections of objects (e.g. Integer) but not primitive values (e.g. int)

Orthogonality: Constructs can be combined in a meaningful way:

in C: All parameters are passed by value except arrays

in Java: A class can have static members but an abstract class cannot.

Uniformity: Constructs appear and behave consistently:

in C, Java: = means “assignment” while == is a comparison.

“Law of least astonishment”

31 / 34

Course Organization Introduction Languages and Characteristics Paradigms History Design Criteria

E�ciency

E�ciency of executable code

E�ciency of translation

E�ciency of programming

Reusabilty

Reliability

Security

Maintainability

32 / 34

Course Organization Introduction Languages and Characteristics Paradigms History Design Criteria

Consistency, Precision and Security

Use of accepted notations and notions

DO 9 I = 1, 10

DO 9 I = 1. 10

Availability of well-specified standards

When is int same as long? short?

Are structures byte aligned? or word aligned?

Constructs to build programs that cannot be subverted

Array bounds checks

Safety in types

33 / 34

Course Organization Introduction Languages and Characteristics Paradigms History Design Criteria

Error Detection and Correction

Catch programming errors at compile-time

Strong type system

Memory safety

Constructs to handle usage errors

Exception handling mechanism

Mechanisms to test and uncover errors

Reflection . . .

34 / 34

	Course Organization
	Info and Support
	Course Description
	Text
	Grading
	Cheating

	Introduction
	Languages and Characteristics
	Paradigms
	History
	Design Criteria

