
 1

Implementation Aspects of OO-Languages

 Allocation of space for data members: The space for data
members is laid out the same way it is done for structures
in C or other languages. Specifically:
• The data members are allocated next to each other.

• Some padding may be required in between fields, if the underlying
machine architecture requires primitive types to be aligned at
certain addresses.

• At runtime, there is no need to look up the name of a field and
identify the corresponding offset into a structure; instead, we can
statically translate field names into relative addresses, with
respect to the beginning of the object.

• Data members for a derived class immediately follow the data
members of the base class

• Multiple inheritance requires more complicated handling, we will
not discuss it here

 2

Implementation Aspects of OO-Languages

class B {

 int i; double d;

 char c; float f; }

 0 // Integer requires 4 bytes

 4 // pad,

 8 // Double requires 8 bytes

 16 // char needs 1 byte, 3 are padded

 20 // float to be aligned on 4-byte

 // require 4-bytes of space

float f

char c|XXXXX

double d

XXXXXXXXXXX

int i

 3

Implementation Aspects of OO-Languages

class C { 0

 int k, l; B b;

} 4

 8

 12

 16

 24

 28
 float f

 char c|XXXXX

double d

 XXXXXXXXXXX

int i

 int l

int k

 4

Implementation Aspects of OO-Languages

class D: public C { 0

 double x;

} 4

 8

 12

 16

 24

 28

 32 double x

 float f

 char c|XXXXX

 double d

 XXXXXXXXXXX

 int i

 int l

 int k

 5

Implementation of Virtual Functions

Approach 1:

• Lookup type info at runtime, and then call the
function defined by that type.

• Problem: very expensive, require type info to
be maintained at runtime.

 6

Implementation of Virtual
Functions(Contd.)

 Approach 2:
• Treat function members like data members:

• Allocate storage for them within the object.

• Put a pointer to the function in this location, and translate calls
to the function to make an indirection through this field.

• Benefit:
• No need to maintain type info at runtime.

• Implementation of virtual methods is fast.

• Problem:
• Potentially lot of space is wasted for each object.

• Even though all objects of the same class have identical
values for the table.

 7

Implementation of Virtual
Functions(Contd.)

Approach 3:

• Introduce additional indirection into approach
2.

• Store a pointer to a table in the object, and this
table holds the actual pointers to virtual
functions.

• Now we use only one word of storage in each
object.

 8

Implementation of Virtual
Functions(Contd.)

class B {

 int i ;

 char c ;

 virtual void g();

 virtual void h();

 }

B b1, b2;

i

c

VMT ptr

i

c

VMT ptr

Ptr to B’s g

Ptr to B’s h

 9

Impact of subtype principle on

Implementation
 The subtype principle requires that any piece of code

that operates on an object of type B can work "as is"
when given an object belonging to a subclass of B.

 This implies that runtime representation used for
objects of a subtype A must be compatible with those
for objects of the base type B.

 Note that the way the fields of an object are accessed
at runtime is using an offset from the start address for
the object.
• For instance, b1.i will be accessed using an expression

of the form *(&b1+0), where 0 is the offset
corresponding to the field i.

• Similarly, the field b1.c will be accessed using the
expression *(&b1+1)

 10

Impact of subtype principle on
Implementation (Contd.)

 an invocation of the virtual member function
b1.h() will be implemented at runtime using
an instruction of the form:

 call *(*(&b1+2)+1)
• &b1+2 gives the location where the VMT ptr is

located

• *(&b1+2) gives the value of the VMT ptr, which
corresponds to the location of the VMT table

• *(&b1+2) + 1 yields the location within the VMT
table where the pointer to virtual function h is
stored.

 11

Impact of subtype principle on
Implementation (Contd.)

 The subtype principle imposes the following
constraint:
• Any field of an object of type B must be stored at

the same offset from the base of any object that
belongs to a subtype of B.

• The VMT ptr must be present at the same offset
from the base of any object of type B or one of
its subclasses.

• The location of virtual function pointers within the
VMT should remain the same for all virtual
functions of B across all subclasses of B.

 12

Impact of subtype principle on
Implementation (Contd.)

 We must use the following layout for an object of type A
defined as follows:

 class A: public B {
 float f;

 void h(); // reuses implementation of G from B;

 virtual void k();}

 A a;

 Float f

 VMT ptr

 c

 i

a’s layout

Ptr to A’s k

Ptr to A’s h

Ptr to B’s g

Virtual Method Table
(VMT)for class A

 13

Impact of subtype principle on
Implementation (Contd.)

 In order to satisfy the constraint that VMT ptr
appear at the same position in objects of type A
and B, it is necessary for the data field f in A to
appear after the VMT field.

 A couple of other points:
• a) non-virtual functions are statically dispatched, so

they do not appear in the VMT table

• b) when a virtual function f is NOT redefined in a
subclass, the VMT table for that class is initialized with
an entry to the function f defined its superclass.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

