Parameter Passing Mechanisms

CSE 307: Principles of Programming Languages

Procedures and Parameter Passing

R. Sekar

1/28

Parameter Passing Mechanisms

Topics

1. Parameter Passing Mechanisms

Parameter Passing Mechanisms

Control Statements (Continued)

@ Procedure calls:

e Communication between the calling and the called procedures takes place via parameters.

@ Semantics:

o substitute formal parameters with actual parameters
e rename local variables so that they are unique in the program
@ In an actual implementation, we will simply look up the local variables in a different environment
(callee’s environment)

@ Renaming captures this semantics without having to model environments.

o replace procedure call with the body of called procedure




Parameter Passing Mechanisms

Section 1

4128

Parameter Passing Mechanisms

Parameter-passing semantics

Call-by-value

Call-by-reference

Call-by-value-result

Call-by-name

Call-by-need

@ Macros

Parameter Passing Mechanisms

Call-by-value

@ Evaluate the actual parameters
@ Assign them to corresponding formal parameters

e Execute the body of the procedure.

int p(int x) {
x =x +1 ;
return x ;

}
@ An expression y = p(5+3) is executed as follows:

o evaluate 5+3 = 8, call p with 8, assign 8 to x, increment x, return x which is assigned to y.




Parameter Passing Mechanisms

Call-by-value (Continued)

@ Preprocessing
o create a block whose body is that of the procedure being called
e introduce declarations for each formal parameter, and initialize them with the values of the

actual parameters

@ Inline procedure body

o Substitute the block in the place of procedure invocation statement.

Parameter Passing Mechanisms

Call-by-value (Continued)

@ Replacing the invocation p(y) as

(] .
Example described yields:
int z;
void p(int x){ int z;
z = 2%x; main(){
} int y;
main(){ {
int y; int xl=y;
P(Y); z = 2%x1;
} }
¥

Parameter Passing Mechanisms

“Name Capture”

e Same names may denote different entities in the called and calling procedures

@ To avoid name clashes, need to rename local variables of called procedure
o Otherwise, local variables in called procedure may be confused with local variables of

calling procedure or global variables




Parameter Passing Mechanisms

Call-by-value (Continued)

e Example: @ After replacement:
int z; int z;
void p(int x){ main(){
int y = 2; int y;
Z = y*xX; {
} int x1=y;
main(){ int y1=2;
int y; z = yl*x1;
p(y); }
} }

Parameter Passing Mechanisms

Call-by-reference

Evaluate actual parameters (must have I-values)

Assign these |-values to formal parameters

Execute the body.

int z = 8;

y=p(z);
After the call, y and z will both have value 9.

Call-by-reference supported in C++, but not in C

o Effect realized by explicitly passing l-values of parameters using “&” operator

Parameter Passing Mechanisms

Call-by-reference (Continued)

@ Explicit simulation in C provides a clearer understanding of the semantics of
call-by-reference:

int p(int *x){
*x = *x + 1;

return *x;

int z;

y= p(&z);




Parameter Passing Mechanisms

Call-By-Reference (Continued)

e Example: @ After replacement:
int z; int z;
void p(int x){ main(){
int y = 2; int y;
Z = y*xX; {
} int& x1=y;
main(){ int y1=2;
int y; z = yl*x1;
p(y); }
} }

Parameter Passing Mechanisms

Call-by-value-result

@ Works like call by value but in addition, formal parameters are assigned to actual
parameters at the end of procedure.

void p (int x, int y) {
X +1;

yt 1

X

y
}

int a = 3;

pa, a) ;
o After the call, a will have the value 4, whereas with call-by- reference, a will have the

value 5.

Parameter Passing Mechanisms

Call-by-value-result (Continued)

@ The following is the equivalent of call-by-value-result call above:

X =a;y=a;

b4 x +1 ;
y =y +1 ;
a=x ; a-=y ;

o thus, at the end, a = 4.




Parameter Passing Mechanisms

Call-By-Value-Result (Continued)

o After replacement:

e Example: ,
main(){
void p(int x, y){ int u = 3;
X =x+ 1; {
y=y+1; int x1 = u;
} int y1 = u;
main(){ x1 =x1 + 1;
int u = 3; yl =yl + 1;
p(u,w; u=x1; u=yi;
} }
}

16

28

Parameter Passing Mechanisms

Call-by-Name

@ Instead of assigning I-values or r-values, CBN works by substituting actual parameter

expressions in place of formal parameters in the body of callee

@ Preprocessing:

o Substitute formal parameters in procedure body by actual parameter expressions.

e Rename as needed to avoid “name capture”

o Inline:

e Substitute the invocation expression with the modified procedure body.

Parameter Passing Mechanisms

Call-By-Name (Continued)

e Example:

o o After replacement:
void p(int x, y){

int u; main(){
if (x==0) int u;
then return 1; {
else{ if (0==0)
return y; then return 1;
} else{
} return y;
main(){ }
int u=5; int v=0; ¥
p(v,u/v); ¥




Parameter Passing Mechanisms

Call-By-Need

e Similar to call-by-name, but the actual parameter is evaluated at most once
e Has same semantics as call-by-name in functional languages
e This is because the value of expressions does not change with time

e Has different semantics in imperative languages, as variables involved in the actual
parameter expression may have different values each time the expression is evaluated in
C-B-Name

Parameter Passing Mechanisms

Macros

@ Macros work like CBN, with one important difference:

e No renaming of “local” variables

@ This means that possible name clashes between actual parameters and variables in

the body of the macro will lead to unexpected results.

Parameter Passing Mechanisms

Macros (Continued)

@ given
#define sixtimes(y) {int z=0; z = 2%y; y = 3*z;}
main() {
int x=5, z=3;
sixtimes(z);

}
@ After macro substitution, we get the program:

main(){
int x=5,2z=3;
{int z=0; z = 2*z; y = 3*z;}




Parameter Passing Mechanisms

Macros (Continued)

e It is different from what we would have got with CBN parameter passing.

@ In particular, the name confusion between the local variable z and the actual

parameter z would have been avoided, leading to the following result:

main() {

int x = b, z = 3;

{

int z1=0; // z renamed as z1

zl = 2xz; // y replaced by z without

z = 3xz1; // confusion with original =z
}

Parameter Passing Mechanisms

Difficulties in Using Parameter Passing Mechanisms

e CBV: Easiest to understand, no difficulties or unexpected results.

e CBVR:
o When the same parameter is passed in twice, the end result can differ depending on the
order.
o The order of values assigning back to actual parameters.

o Otherwise, relatively easy to understand.

Parameter Passing Mechanisms

Difficulties With CBVR (Continued)

e Example:

int £(int x, int y) {
x=4;
¥=5;

}

void g() {
int z;
f(z, z);

}

o If assignment of formal parameter values to actual parameters were performed left to

right, then z would have a value of 5.

o If they were performed right to left, then z will be 4.




Parameter Passing Mechanisms

Difficulties in Using CBR

@ Aliasing can create problems.
int rev(int a[], int b[], int size) {
for (int i = 0; i < size; i++)
a[i] = b[size-i-1];
}
@ The above procedure will normally copy b into a, while reversing the order of

elements in b.

@ However, if a and b are the same, as in an invocation rev(c,c,4), the result is quite
different.

e If cis 1,2,3,4 at the point of call, then its value on exit from rev will be 4,3,3,4.

Parameter Passing Mechanisms

Difficulties in Using CBN

@ CBN is complicated, and can be confusing in the presence of side-effects.
o actual parameter expression with side-effects:

void f(int x) {

int y = x;

int z = x;
¥
main() {
int y = 0;
f(y++);
}

@ Note that after a call to f, y’s value will be 2 rather than 1.

Parameter Passing Mechanisms

Difficulties in Using CBN (Continued)

o If the same variable is used in multiple parameters.

void swap(int x, int y) {
int tp = x;
X =7y;
y = tp;

¥

main() {
int a[] = {1, 1, 0};
int i = 2;
swap(i, alil);

}

@ When using CBN, by replacing the call to swap by the body of swap: i will be 0, and a
will be 2,1, 0.




Parameter Passing Mechanisms

Difficulties in Using Macro

@ Macros share all of the problems associated with CBN.

e In addition, macro substitution does not perform renaming of local variables, leading

to additional problems.




	Parameter Passing Mechanisms

