If-Then-Else

CSE 307: Principles of Programming Languages

Statements and Control Flow

R. Sekar

1/18

If-Then-Else

Topics

1. If-Then-Else

2118

If-Then-Else

Control Statements

@ Structured Control Statements:

@ Case Statements:

o Implementation using if-then-else
e Understand semantics in terms of the semantics of simple constructs

e actual implementation in a compiler

@ Loops

o while, repeat, for

If-Then-Else

Section 1

If-Then-Else

If-Then-Else

o If-then-else. It is in two forms:
o if cond then sl else s2

e if cond then sl

@ evaluate condition: if and only if evaluates to true, then evaluate sl otherwise

evaluate s2.
e Dangling else problem: if c1 then if c2 then si else s2

e may be intrepreted as:
if c1 then

if c2 then sl
else s2
@ or
if c1 then
if ¢2 then sl else s2

If-Then-Else

If-Then-Else (Continued)

@ This ambiguity can be avoided by bracketing syntax:
o if cond then sl fi

e if cond then sl else s2 fi

@ The above intended statements can be written as:
if c1 then
if ¢2 then sl1 else s2 fi
£i
@ or
if c1 then
if ¢2 then si1 fi
else s2 fi

@ Another way to avoid ambiguity is to use: associate else with closest “if” that doesn’t

have “else”. This is used in most programming languages (C, C++ etc)

If-Then-Else

Case Statement

@ (Case statement
switch(<expr>){
case <value> :

case <value> :

default :
¥

@ Evaluate “<expr>” to get value v. Evaluate the case that corresponds to v.

@ Restriction:
o “<value>” has to be a constant of an original type e.g., int, enum
o Why?

If-Then-Else

Implementation of case statement

@ Naive algorithm:
e Sequential comparison of value v with case labels.

e This is simple, but inefficient. It involves O(N) comparisons

switch(e){
case 0:s50;
1:s1;
case 2:82;
3:s53;

case

case

}
@ can be translated as:

v = e;
if (v==0) s0;

else if (v == 1) si;
else if (v == 2) s2;
else if (v == 3) s3;

If-Then-Else

Implementation of case statement (Continued)

@ Binary search:
o O(log N) comparisons, a drastic improvement

e over sequential search for large N.

@ Using this, the above case statement can be translated as
v = e;
if (ve=1)
if (v==0) s0;
else if (v==1) si;
else if (v>=2)
if (v==2) s2;
else if (v==3) s3;

9/18

If-Then-Else

Implementation of case statement (Continued)

@ Another technique is to use hash tables.

@ This maps the value v to the case label that corresponds to the value v.

@ This takes constant time (expected).

10/18

If-Then-Else

Control Statements (contd.)

o while:
o let sl = while Cdo S
e then it can also be written as
o sl = if C then {S; sl}

@ repeat:
o let s2 = repeat S until C
o then it can also be written as
e s2 =S;if (IC) then s2

e loop
o lets =loop S end

e its semantics can be understood as S; s

o S should contain a break statement, or else it won't ferminate

1/18

If-Then-Else

For-loop

@ Semantics of for (S2; C; S3) S can be specified in terms of while:

e S2; while C do {S; S3}

@ In some languages, additional restrictions imposed to enable more efficient code

o Value of index variable can’t change loop body, and is undefined outside the loop

e Bounds may be evaluated only once

If-Then-Else

Unstructured Control Flow

@ Unstructured control transfer statements (goto) can make programs hard to

understand:

40:if (x > y) then goto 10
if (x < y) then goto 20
goto 30

10:x =x -y
goto 40

20:y =y -x
goto 40

30:gcd = x

13/18

If-Then-Else

Unstructured Control Flow (Continued)

@ Unstructured control transfer statements (goto) can make programs hard to

understand:

40:if (x > y) then goto 10
if (x < y) then goto 20
goto 30

10:x = x -y
goto 40

20:y =y -x
goto 40

30:gcd = x

e Equivalent program with structured control statements is easier to understand:
while (x!=y) {
if (x > y) then x=x-y
else y=y-x
}

14/18

If-Then-Else

Control Statements (contd.)

@ goto should be used in rare circumstances

e e.g., error handling.

@ Java doesn't have goto. It uses labeled break instead:

11: for (...) {
while (...) {

break 11
}
}

@ break 1 causes exit from loop labeled with |1

If-Then-Else

Control Statements (contd.)

@ Restrictions in use of goto:
e jumps across procedures

e jumps from outer blocks to inner blocks or unrelated blocks

goto 11;
if (...) then {
int x;
x = b3
11: y = x*x;
}

@ Jumps from inner to outer blocks are permitted.

16/18

If-Then-Else

Statements
S —» id = E; type stmt = Assign of id * expr
S = if CSlelse S | If of cond * stmt * stmt
‘ | While of cond * stmt
S — whileCS | Block of stmt list ;;
S — {S+}

@ What does the statementy = x + 1; do?
@ The effect of a statement is to change the store.
@ eval_stmt: sStmt * environment * store -> store

@ We will use a function update_store to change the store:

update_store(s, 1, v) gives a new store sn which is identical to s except that location 1

in sn contains value v.
17/18

If-Then-Else

Evaluating statements: The Program

eval_stmt(stmt, env, store) =
match stmt with

| Assign(x, e) ->
let 1 = binding_of (env, x)
and v

eval_expr(e, env, store)
in update_store(store, 1, Intval(v))
| If(c, s1, s2) ->
if (eval_cond(c, env, store))
then eval_stmt(sl, env, store)
else eval_stmt(s2, env, store)

| While(c, s) ->
if (eval_cond(c, env, store))
then let store’ = eval_stmt(s, env, store)
in eval_stmt(While(c, s), env, store?)
else store

18/18

	If-Then-Else

