1/29

1. Intro

2. Lexical Structure
Regular expressions
Finite-State Automata

3. Syntactic Structure

Grammars

Derivations

Ambiguity

Parse Trees

Using Grammars to Describe Syntax

2129

Section 1

3/29

Intro Lexical Structure Syntactic Structure

Syntax Vs Semantics

e Syntax describes the structure of a program

o Determines which programs are legal
o Consists of two parts
o Lexical structure: Structure of words
Distinguish between words in the language from random strings
e Grammar: How words are combined into programs
Similar to how English grammar governs the structure of sentences in English

@ Programs following syntactic rules may or may not be semantically correct.

o Compare with grammatically correct but nonsensical English sentences

@ Formal mechanisms used to describe syntax and semantics to ensure that a language

specification is unambiguous and precise

Intro Lexical Structure Syntactic Structure

Meta Languages

@ Formal mechanisms are used to describe all allowable programs in a language

e Backus-Naur Form

e Grammars

e We need languages to define languages (called meta-languages)

BNFs, Grammars etc. will be described in meta languages

Section 2

6/29

Intro Lexical Structure Syntactic Structure Regular expressions Finite-State Automata

Lexical Structure

Constants and Literals: (6.023e + 23, "Enter:", etc.)

White space: Typically, blank, tab, or new line characters. Used to separate words, but

otherwise ignored
Special Symbols: “<”, ", etc. Can be used as separator, but not ignored.
Identifiers: (x, getChar, id_£2)

Words with prespecified meaning: if, boolean, class.
@ In some languages, these words could also be used as identifiers — in

this case, they are called keywords as their use is not reserved.

Intro Lexical Structure Syntactic Structure Regular expressions Finite-State Automata

Describing the Lexical Structure

Regular Expressions are used as the meta language.
e (O|1]...]9)+

(describes non-negative integer constants)
e Short-hand notations are often used: e.g.,

o [0 — 9]+ (one more more occurrences of characters in range [0 — 9])
o //.x (two slashes followed by sequence of zero or more non-newline characters)

(C++-style single-line comments)

Intro Lexical Structure Syntactic Structure Regular expressions Finite-State Automata

Language of Regular Expressions

Notation to represent (potentially) infinite sets of strings over alphabet .

Let R be the set of all regular expressions over . Then,
Empty String : e € R

Unit Strings : a € X = a € R

Concatenation : ,n € R= nnp € R

Alternative : r,, € R=(n| n) €R

Kleene Closure : re R=r* € R

Intro Lexical Structure Syntactic Structure Regular expressions Finite-State Automata

Regular Expression

a : stands for the set of strings {a}

a| b : stands for the set {a,b}

@ Union of sets corresponding to REs a and b

ab : stands for the set {ab}
@ Analogous to set product on REs for a and b
o (a|b)(a|b): stands for the set {aa, ab, ba, bb}.

a* : stands for the set {¢, a, aa, aaa, ...} that contains all strings of zero or more a’s.

@ Analogous to closure of the product operation.

10/29

Intro Lexical Structure Syntactic Structure Regular expressions Finite-State Automata

Regular Expression Examples

(alb)* : Set of strings with zero or more a’s and zero or more b’s:
{€, a, b, aa, ab, ba, bb, aaa, aab, . . .}

(a*b*) : Set of strings with zero or more a’s and zero or more b’s such that all a’s

occur before any b:
{€, a, b, aa, ab, bb, aaa, aab, abb, . . .}
(a*b*)* : Set of strings with zero or more a’s and zero or more b’s:

{€, a, b, aa, ab, ba, bb, aaa, aab, . . .}

Semantic Function L: Maps regular expressions to sets of strings.

L(e) = {e}

L(@) = {a} (acl)
L(n|r) = L(n)UL(r)
L(nr) = L(n)-L(r)

L(r) = {eqU(£L(r)-£L(r"))

12/29

Intro Lexical Structure Syntactic Structure Regular expressions Finite-State Automata

Finite State Automata

Regular expressions are used for specification, while FSA are used for computation.

FSAs are represented by a labeled directed graph.

@ A finite set of states (vertices).

o Transitions between states (edges).

Labels on transitions are drawn from ¥ U {e}.

One distinguished start state.

@ One or more distinguished final states.

Intro Lexical Structure Syntactic Structure Regular expressions Finite-State Automata

Finite State Automata: An Example

Consider the Regular Expression (a | b)*a(a | b).
L((a | b)*a(a | b)) = {aa, ab, aaa, aab, baa, bab,
aaaa, aaab, abaa, abab, baaa, . ..}.
The following (non-deterministic) automaton determines whether an input string

belongs to L((a | b)*a(a | b)):

(a | b)*a(a | b):

a
a
Nondeterministic: g a 9.@
(NFA O .
b

Deterministic:
(DFA)

15/29

Intro Lexical Structure Syntactic Structure Regular expressions Finite-State Automata

Lexical Analysis

@ Regular expressions describing the lexical structure are converted into a finite-state

machine

@ This FSM can recognize words very quickly

o algorithm linear in the size of input program
e Efficient FSMs generated automatically from RE-based definitions

@ Lex was the first lexical-analyzer generator

e Now superceded by Flex (and other similar tools)

Intro Lexical Structure Syntactic Structure Regular expressions Finite-State Automata

Ambiguity Resolution

@ Consider a language with lexical definitions
Integer = [0—9]+ (i.e.,[0—9][0 — 9]%)
Identifier ::= [a— z] * ([a— z]|[0 — 9])*
e Consider the string “xx21”

o Is this to be treated as a single identifier,

e or as an identifier “xx” followed by an integer 21?

@ Need disambiguation rules
Bad: give priority to RE that occurs first in the language specification

Better: prefer longer matches to shorter ones

Section 3

18/29

Intro Lexical Structure Syntactic Structure Grammars Derivations Ambiguity Parse Trees Using Grammars to Describe Syntax

Syntactic Structure

“How to combine words to form programs”
e Context-free grammars (CFG) and Backus-Naur form (BNF)

e terminals

e nonterminals
o productions of the form nonterminal rightarrow sequence of terminals and nonterminals

@ EBNF and syntax diagrams

19/29

Intro Lexical Structure Syntactic Structure Grammars Derivations Ambiguity Parse Trees Using Grammars to Describe Syntax

Syntactic (phrase) structure

Context-Free Grammars:

E — E+E
E — ExE
E — num

e E: Non-terminal symbol

@ num, +: Terminal symbol

@ E — num: Grammar “rule” or production

o L(E): set of strings that can be derived from E (Language of E)

20/29

Intro Lexical Structure Syntactic Structure Grammars Derivations Ambiguity Parse Trees Using Grammars to Describe Syntax

Grammars and Derivations

(sent) = (np) (vp) (sent) = (np) (vp)
(np) — (art) (noun) = (art) (noun) (vp)
(art) — a|the = the (noun) (vp)
(noun) — student | test = the test (vp)
(vp) — {verb) (mp)
(verb) — takes |ruins (sent) = (np) (vp)
S (np) (verb) {np)
= (np) (ruins) (np)
= (np) (ruins) (art) (noun)
= (np) (ruins) (art) student i

E — E-FE

E — num
num - num - num num - num - num
E - num - num num - num - F
E - E - num num - E - E
E - num num - FE
E - E E — E
E E

5-3-1=(5-3)-1 5-3-1=5-(3-1)

22129

Graphical Representation of Derivations

E — E+E
— id+E
—> 1id+1id

E

id

/

E

+

N\

E

id

E — E+E
— E+id
—> 1id + id

A Parse Tree succinctly captures the structure of a sentence.

23/29

A Grammar is ambiguous if there are multiple parse trees for the same sentence.

Example: id + id + id

/

|
id

+

/

E

E

N\

+ E
E id
id

24129

Intro Lexical Structure Syntactic Structure Grammars Derivations Ambiguity Parse Trees Using Grammars to Describe Syntax

Associativity and Precedence

@ Binary operators may be left-, right-, or non-associative.
@ Precedence specifies how tightly arguments are bound to an operator.

@ Associativity and precedence are specified to remove ambiguity.

A sampling of operators in C:
Operator Associativity

= right

| left
&& left
-+ left

* /, h left

25/ 2¢

Intro Lexical Structure Syntactic Structure Grammars Derivations Ambiguity Parse Trees Using Grammars to Describe Syntax

Parsing

Techniques to determine whether a sentence belongs to a language
@ Parsing algorithms are more expensive than recognizers for regular languages.

e Grammar may need to be modified to accomodate parsing algorithms (Recursive
descent, LALR, ...).

@ Parsers typically build an abstract syntax tree which omits syntactic details and
preserves the overall structure of a sentence.
e.g.
Concrete Syntax: (s) —while (e) do (s)
Abstract Syntax: s — while(e, s)

@ Abstract syntax are “data types” in an interpreter/compiler.

(md) — (mod) (type) (id) ((params)) (block)

(params) — (param),(params)

(params) — (param)

(block) — { (stmts) }
(stmts) — (stmt) (stmts)

(stmts) — €

27129

Intro Lexical Structure Syntactic Structure Grammars Derivations Ambiguity Parse Trees Using Grammars to Describe Syntax

EBNF

Extended BNF: with “regular expression”-like operators to make grammars more concise.
@ { A} zero or more occurrences of A.
@ [A]: zero or one occurrence of A.

e Additionally, we can write rules of the form

(s) = () (a [{p)) (&)

to represent two rules in BNF:

(md) — [(mod)] (type) (id) ((params)) (block)

(params) — (param) {, (param)}

(params) — (param)

(block) — { {(stmt)} }

29/29

	Intro
	Lexical Structure
	Regular expressions
	Finite-State Automata

	Syntactic Structure
	Grammars
	Derivations
	Ambiguity
	Parse Trees
	Using Grammars to Describe Syntax

