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Simple Types

@ Predefined
e int, float, double, etc in C
e int, bool, float, etc. in OCAML

@ All other types are constructed, starting from predefined (aka primitive) types
e Enumerated:
e enum colors {red, green, blue} in C
e type colors = Red|Green|Blue in OCAML
o type is a keyword in OCAML to introduce new types
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Section 2
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Compound Types

@ Types constructed from other types using type constructors
e Cartesian product (*)

e Function types (—)

Union types (U)
e Arrays

e Pointers

Recursive types
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Cartesian Product

@ Let / represent the integer type and R represent real type.

@ The cross product / X R is defined in the usual manner of product of sets, i.e.,
I x R=A{(i,r)|i € I,r € R}
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Product Types (Continued)

@ Product types correspond to “tuples” in OCAML.
@ They are not supported in typical imperative languages, except with labels.

@ Type on previous slide denoted int*float in OCAML.
# let v = (2,3.0);;
val v : int * float = (2, 3.)
# type mytype = int * float;;
type mytype = int * float
e Note: type is a keyword to introduce new names (abbreviations) for types already

known to OCAML, or for introducing new types unknown to OCAML.

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compati

Product Types (Continued)

e Cartesian product operator is non-associative:

# let t = (2,3,4.0);;
val t : int * int * float = (2, 3, 4.)
# let s = ((2,3), 4.0);;

val s : (int * int) * float = ((2, 3), 4.)
# let u = (2, (3,4.0));;

val u : int * (int * float) = (2, (3, 4.))
#1t=s;;

Error: This expression has type (int * int) * float but an expression was
expected of type int * (int * float)

@ Note: compiler complains that the types of arguments to equality operator must be

the same, but it is not so in this case.

@ You will get type error messages if you try to compare s = u or t = u.
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Product Types (Continued)

@ Note: The equality operator has the type 't *' t — bool for any type t.
o 't is a type variable
o Type variable names begin with a’

e Elements of a 2-tuple can be extracted using fst and snd:

# fst(u);;

- : int = 2

# snd(u);;

- : int * float = (3, 4.)

# snd(t);;

Error: This expression has type int * int * float but an expression
was expected of type ’a * ’b

# let third_of_four(_,_, x,_) = x;;

val third_of_four : ’a * ’b * ’c * ’d -> ’c = <fun>

@ The error message says that t has more than two elements.
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Labeled Product types

@ In Cartesian products, components of tuples don’t have names.

o Instead, they are identified by numbers.
@ In labeled products each component of a tuple is given a name.

@ Labeled products are also called records (a language-neutral term)
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Labeled Product types (Continued)

@ struct is a term that is specific to C and C++

struct t {int a;float b;char *c;}; in C
type t = {a:int; b:float; c:string};; in OCAML

@ In OCAML, components of a labeled tuple value can be accessed using the dot
notation <identifier>.<field_name>

# type t = { a : int; b : float; c : string; };;
type t = { a : int; b : float; ¢ : string; }

# let m = {a=1;b=2.0;c="abc"};;

valm : t ={a=1; b=2.; ¢ = "abc"}

# m.c;;

- : string = "abc"
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Function Types

e T, — T, is a function type

e Type of a function that takes one argument of type Tj and returns type T,

@ OCAML supports functions as first class values.

o They can be created and manipulated by other functions.

@ In imperative languages such as C/C++, we can pass pointers to functions, but this
does not offer the same level of flexibility.
e E.g., no way for a C-function to dynamically create and return a pointer to a function;

o rather, it can return a pointer to an EXISTING function
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OCAML Examples of Function Types

e Example

# let £ x = x * x3;;

val £ : int -> int = <fun>

#let gxy=x*%.7;;

val g : float -> float -> float = <fun>

e Note: g is different from h given below.
o g takes two arguments, which can be supplied one at a time
o h takes only one argument, which is a tuple with two components.

# let h (x, y) = x *. y;3;

val h : float * float -> float = <fun>
# let v =g 3.0;;

val v : float -> float = <fun>
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Function Types (Continued)

e Type of g is float -> float -> float.

e -> operator is right-associative, so we read the type as float -> (float -> float).
@ When g is given one argument, it returns a new function value.

e g, when given an argument of type float, returns a value of type (float -> float)

# let u=v 2.0;;
val u : float = 6.

@ When a float argument is given to v, it consumes it and produces an output value of

type float.

e v is called a “closure”
o It represents a function for which some arguments have been provided, but its evaluation
cannot proceed unless additional arguments are provided.

e The closure "remembers" the arguments supplied so far
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Union types

@ Union types correspond to set unions, just like product types corresponded to
Cartesian products.

e -> operator is right-associative, so we read the type as float -> (float -> float).

@ Unions can be tagged or untagged. C/C++ support only untagged unions:

union v {
int ival;
float fval;
char cval;

};
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Tagged Unions

@ In untagged unions, there is no way to ensure that the component of the right type is
always accessed.
e E.g., an integer value may be stored in the above union, but due to a programming error,
the fval field may be accessed at a later time.

o fval doesn’t contain a valid value now, so you get some garbage.

e With tagged unions, the compiler can perform checks at runtime to ensure that the

right components are accessed.

@ Tagged unions are NOT supported in C/C++.
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Tagged Unions (Continued)

@ Pascal supports tagged unions using VARIANT RECORDs  recorp
CASE b: BOOLEAN OF
TRUE: i: INTEGER; |
FALSE: r: REAL END
END
END

@ Tagged union is also called a discriminated union
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Tagged Unions (Continued)

@ Tagged unions are supported in OCAML using type declarations.

# type tt = Floatval of float | Intval of int;;
type tt = Floatval of float | Intval of int
# let v = Floatval (2.0);;
val v : tt = Floatval 2.
# let u = Intval (3);;
val u : tt = Intval 3
# let add (x, y) =
match (x, y) with
(Intval x1, Intval x2) -> Intval(x1+x2)
| (Floatval x1, Floatval x2) -> Floatval(xl+.x2);;
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
(Floatval _, Intval _)
val add : tt * tt -> tt = <fun>
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Tagged Unions (Continued)

@ Tagged unions are supported in OCAML using type declarations.

# add (u, v);;

Exception: Match_failure ("//toplevel//", 14, 3).
# let w = Intval(3);;

val w : tt = Intval 3

# add(u,w);;

- : tt = Intval 6

@ Note: we can redefine add as follows so as to permit addition of floats and ints.

# let add (x, y) =
match (x, y) with
(Intval x1, Intval x2) -> Intval(xl + x2)
| (Floatval x1, Floatval x2) -> Floatval(xl +. x2)
| (Intval x1, Floatval y1) -> Floatval(float_of_int(x1) +. y1)
| (Floatval x1, Intval y1) -> Floatval(xl +. float_of_int(y1));;
val add : tt * tt -> tt = <fun>
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Array types

@ Array construction is denoted by

e array(<range>, <elememtType>).

o C-declaration
e int a[b];

o defines a variable a of type array(0-4, int)

@ A declaration
e union tt b[6][7];

o declares a variable b of type array(0-4, array(0-6, union tt))

e We may not consider range as part of type
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Pointer types

@ A pointer type will be denoted using the syntax
o ptr(<elementType>)
o where <elementType> denote the types of the object pointed by a pointer type.

@ The C-declaration
e char *s;

o defines a variable s of type ptr(char)

@ A declaration
e int (*f)(int s, float v)
o defines a (function) pointer of type ptr(int*float — int)
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Recursive types

@ Recursive type: a type defined in terms of itself.

e Example in C:

struct IntList {
int hd;
intList tl;

};

@ Does not work:
o This definition corresponds to an infinite list.
o There is no end, because there is no way to capture the case when the tail has the value

uniln
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Recursive types (Continued)

@ Need to express that tail can be nil or be a list.

e Try: variant records:

TYPE charlist = RECORD
CASE IsEmpty: BOOLEAN OF
TRUE: /* empty list */ |
FALSE:
data: CHAR;
next: charlist;
END
END

@ Still problematic: Cannot predict amount of storage needed.
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Recursive types (Continued)

@ Solution in typical imperative languages:

@ Use pointer types to implement recursive type:

struct IntList {
int hd;
IntList *tl;
};

@ Now, tl can be:
e a NULL pointer (i.e., nil or empty list)

e or point to a nonempty list value

@ Now, IntList structure occupies only a fixed amount of storage
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Recursive types In OCAML

e Direct definition of recursive types is supported in OCAML using type declarations.

e Use pointer types to implement recursive type:

# type intBtree =
LEAF of int
| NODE of int * intBtree * intBtree;;
type intBtree = LEAF of int | NODE of int * intBtree * intBtree
@ We are defining a binary tree type inductively:
e Base case: a binary tree with one node, called a LEAF
e Induction case: construct a binary tree by constructing a new node that sores an integer

value, and has two other binary trees as children
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Recursive types In OCAML (Continued)

@ We may construct values of this type as follows:

# let 1 = LEAF(1);;

val 1 : intBtree = LEAF 1

# let r = LEAF(3);;

val r : intBtree = LEAF 3

# let n = NODE(2, 1, r);;

val n : intBtree = NODE (2, LEAF 1, LEAF 3)
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Recursive types In OCAML (Continued)

@ Types can be mutually recursive. Consider:

# type expr = PLUS of expr * expr
| PROD of expr * expr
| FUN of (string * exprs)
| IVAL of int
and
exprs= EMPTY |
LIST of expr * exprs;;
type expr =
PLUS of expr * expr
| PROD of expr * expr
| FUN of (string * exprs)
| IVAL of int
and exprs = EMPTY | LIST of expr * exprs

@ The key word “and” is used for mutually recursive type definitions.
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Recursive types In OCAML (Continued)

@ We could also have defined expressions using the predefined list type:

# type expr=PLUS of expr*expr
| PROD of expr*expr
| FUN of string * expr list;;
type expr =
PLUS of expr * expr
| PROD of expr * expr
| FUN of string * expr list

e Examples: The expression “3 + (4 * 5)” can be represented as a value of the above

type expr as follows
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Recursive types In OCAML (Continued)

@ The following picture illustrates the structure of the value “pl” and how it is

constructed from other values.

Pl ------ > PLUS
/ \
/ \
v3 ---> IVAL PROD <----- pr
| /\ let v3 = IVAL(3);;
| / \ let vb = IVAL(5);;
3 /->IVAL IVAL <--- v4  let v4 = IVAL(4);;
let pr = PROD(v5, v4);;
/ | | let pl = PLUS(v3, pr);;
v5 | |
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Recursive types In OCAML (Continued)

e Similarly, “f(2,4,)” can be represented as:

let al = EMPTY;;

let a2 = ARG(IVAL(4), al);;
let a3 = ARG(IVAL(2), a2);;
let fv = FUN("f", a3);;

@ Note the use of “expr list” to refer to a list that consists of elements of type “expr”

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compati

Section 3
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Polymorphism

@ Ability of a function to take arguments of multiple types.
@ The primary use of polymorphism is code reuse.

@ Functions that call polymorphic functions can use the same piece of code to operate

on different types of data.
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Overloading (adhoc polymorphism)

e Same function NAME used to represent different functions

e implementations may be different

e arguments may have different types

e Example:
e operator '+ is overloaded in most languages so that they can be used to add integers or
floats.
e But implementation of integer addition differs from float addition.

e Arguments for integer addition or ints, for float addition, they are floats.
@ Any function name can be overloaded in C++, but not in C.

@ All virtual functions are in fact overloaded functions.
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Polymorphism & Overloading

@ Parametric polymorphism:
e same function works for arguments of different types
e same code is reused for arguments of different types.

o allows reuse of “client” code (i.e., code that calls a polymorphic function) as well

e Overloading:
o due to differences in implementation of overloaded functions, there is no code reuse in
their implementation

e but client code is reused
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Parametric polymorphism in C++

e Example:

template <class C>

Type min(const C* a, int size, C minval) {
for (int i 0; i < size; i++)

if (alil

minval

minval)
alil;
return minval;

}

A n

@ Note: same code used for arrays of any type.

“w_n»

e The only requirement is that the type support the “<” and

“_»

operations

@ The above function is parameterized wrt class C

e Hence the term “parametric polymorphism”.

@ Unlike C++, C does not support templates.
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Code reuse with Parametric Polymorphism

@ With parametric polymorphism, same function body reused with different types.

@ Basic property:
o does not need to "look below" a certain level
e E.g., min function above did not need to look inside each array element.
o Similarly, one can think of length and append functions that operate on linked lists of all

types, without looking at element type.
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Code reuse with overloading

@ No reuse of the overloaded function

o there is a different function body corresponding to each argument type.
@ But client code that calls a overloaded function can be reused.

e Example
e Let C be a class, with subclasses ClI,...,Cn.
o Let f be a virtual method of class C

e We can now write client code that can apply the function f uniformly to elements of an

array, each of which is a pointer to an object of type Cl,....Cn.
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Example

e Example:

void g(int size, C *a[]) {
for (int i = 0; i < size; i++)
ali]l->f(...);
}

@ Now, the body of function g (which is a client of the function f) can be reused for

arrays that contain objects of type G or G, or ... or C,or even a mixture of these

types.




Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compati

Parameterized Types

@ Type declarations for parameterized data types:

type (<typeParameters>) <typeName> = <typeExpression>
type (’a, ’b) pairList = (’a * ’b) list;;
e Define Btree:

# type (’a,’b) btree = LEAF of ’a
| NODE of ’b * (’a,’b) btree * (’a,’b) btree;;
type (’a, ’b) btree =
LEAF of ’a
| NODE of ’b * (’a, ’b) btree * (’a, ’b) btree
# type intBTree = (int, int) btree;;
type intBTree = (int, int) btree
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Example Functions and their Type

# let rec leftmost(x) =
match x with
LEAF(x1) -> x1
| NODE(y, 1, r) -> leftmost(l);;
val leftmost : (’a, ’b) btree -> ’a = <fun>

# let rec discriminants(x) =
match x with
LEAF(x1) -> []
| NODE(y,l,r) -> let 11 = discriminants(1)

in let 12 = discriminants(r) in 11Q(y:

val discriminants : (’a list, ’b) btree -> ’b list = <fun>

:12) ;5
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Example Functions (Continued)

# let rec append(x,y) =
match x with
x1::xs -> x1::append(xs,y)
I 0 ->y;;
val append : ’a list * ’a list -> ’a list = <fun>

# let rec f(x,y) =
match x with
xl::xs -> x1::f(xs,y)
[ 00 ->0;;

val £ : ’a list * ’b -> ’a list = <fun>
@ OCAML Operators that restrict polymorphism:

o Arithmetic, relational, boolean, string, type conversion operators

e OCAML Operators that allow polymorphism

e tuple, projection, list, equality (= and <>)
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Section 4
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Type Equivalence

@ Structural equivalence: two types are equivalent if they are defined by identical type
expressions.
e array ranges usually not considered as part of the type

e record labels are considered part of the type.
e Name equivalence: two types are equal if they have the same name.

@ Declaration equivalence: two types are equivalent if their declarations lead back to

the same original type expression by a series of redeclarations.
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Type Equivalence (contd.)

Structural equivalence is the least restrictive

e Name equivalence is the most restrictive.

@ Declaration equivalence is in between
@ TYPE t1 = ARRAY [1..10] of INTEGER; VAR v1: ARRAY [1..10] OF INTEGER;
e TYPE t2 = t1; VAR v3,v4: tl; VAR v2: ARRAY [1.10] OF INTEGER;

Structurally equivalent? | Declaration equivalent? | Name equivalent?

tht2 Yes Yes No
vl,v2 Yes No No
v3,v4 Yes Yes Yes
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Declaration equivalence

@ In Pascal, Modula use decl equivalence

e InC
e Declequivusedforstructsandunions

e Structualequivalenceforothertypes.

struct { int a ; float b ;} x ;
struct { int a; float b; l}y;

e x and y are structure equivalent but not declaration equivalent.  typedef int* intp ;
typedef int** intpp ;
intpp vl ;
intp *v2 ;

@ vl and v2 are structure equivalent.
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Type Compatibility

@ Weaker notion than type equivalence
@ Notion of compatibility differs across operators

e Example: assignment operator:
e v = expr is OK if <expr> is type-compatible with v.
o If the type of expr is a Subtype of the type of v, then there is compatibility.

@ Other examples:
e In most languages, assigning integer value to a float variable is permitted, since integer is a

subtype of float.
o In OO-languages such as Java, an object of a derived type can be assigned to an object of

the base type.
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Type Compatibility (Continued)

@ Procedure parameter passing uses the same notion of compatibility as assignment

o Note: procedure call is a 2-step process
o assignment of actual parameter expressions to the formal parameters of the procedure

o execution of the procedure body
@ Formal parameters are the parameter names that appear in the function declaration.

@ Actual parameters are the expressions that appear at the point of function call.

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compati

Section 6
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Type Checking

e Static (compile time)
e Benefits
@ no run-time overhead

e programs safer/more robust

@ Dynamic (run-time)
o Disadvantages
e runtime overhead for maintaining type info at runtime
o performing type checks at runtime
o Benefits
o more flexible/more expressive

w
o
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Examples of Static and Dynamic Type Checking

o C++ allows
e casting of subclass to superclass (always type-safe)
o superclass to subclass (not necessarily type-safe) 4AS but no way to check since C++ is

statically typed.

@ Java uses combination of static and dynamic type-checking to catch unsafe casts (and

array accesses) at runtime.
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Type Checking (Continued)

e Type checking relies on type compatibility and type inference rules.

e Type inference rules are used to infer types of expressions. e.g., type of (a+b)+c is

inferred from type of a, b and c and the inference rule for operator ‘+'.
e Type inference rules typically operate on a bottom-up fashion.
e Example: (a+b)+c

+:float

T

+:float c:float

N

a:iint b:float
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Type Checking (Continued)

@ In OCAML, type inference rules capture bottom-up and top-down flow of type info.

e Example of Top-down: let f x y:float*int = (x, y)
f:float*int

<N

x:float y:int

@ Here types of x and y inferred from return type of f.

@ Note: Most of the time OCAML programs don'’t require type declaration.
o But it really helps to include them: programs are more readable, and most important, you

get far fewer hard-to-interpret type error messages.
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Strong Vs Weak Typing

e Strongly typed language: such languages will execute without producing uncaught
type errors at runtime.
e no invalid memory access
@ no seg fault
e array index out of range

e access of null pointer

e No invalid type casts
e Weakly typed: uncaught type errors can lead to undefined behavior at runtime
@ In practice, these terms used in a relative sense

e Strong typing does not imply static typing
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Type Conversion

e Explicit: Functions are used to perform conversion.

o example: strtol, atoi, itoa in C; float and int etc.

e Implicit conversion (coercion)
e example:
e If ais float and b is int then type of a+b is float
e Before doing the addition, b must be converted to a float value. This conversion is done

automatically.
@ (Casting (as in C)

@ Invisible “conversion:” in untagged unions
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Data Types Summary

e Simple/built-in types

e Compound types (and their type expressions)
e Product, union, recursive, array, pointer

@ Parametric Vs subtype polymorphism, Code reuse
@ Polymorphism in OCAML, C++,

e Type equivalence
e Name, structure and declaration equivalence

e Type compatibility
e Type inference, type-checking, type-coercion

@ Strong Vs Weak, Static Vs Dynamic typing
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