Phases of Syntax Analysis

1. Identify the words: **Lexical Analysis**.

 Converts a stream of characters (input program) into a stream of tokens.

 Also called *Scanning* or *Tokenizing*.

2. Identify the sentences: **Parsing**.

 Derive the structure of sentences: construct *parse trees* from a stream of tokens.
Lexical Analysis

Convert a stream of characters into a stream of *tokens*.

- **Simplicity**: Conventions about “words” are often different from conventions about “sentences”.

- **Efficiency**: Word identification problem has a much more efficient solution than sentence identification problem.

- **Portability**: Character set, special characters, device features.
Terminology

- **Token**: Name given to a family of words.
 e.g., *integer_constant*

- **Lexeme**: Actual sequence of characters representing a word.
 e.g., 32894

- **Pattern**: Notation used to identify the set of lexemes represented by a token.
 e.g., *[0 – 9]++
Terminology

A few more examples:

<table>
<thead>
<tr>
<th>Token</th>
<th>Sample Lexemes</th>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>while</code></td>
<td><code>while</code></td>
<td><code>while</code></td>
</tr>
<tr>
<td><code>integer_constant</code></td>
<td>32894, −1093, 0</td>
<td><code>(−ϵ)0−9]+</code></td>
</tr>
<tr>
<td><code>identifier</code></td>
<td><code>buffer_size</code></td>
<td><code>[a−zA−Z]+</code></td>
</tr>
</tbody>
</table>
Patterns

How do we *compactly* represent the set of all lexemes corresponding to a token?

For instance:

The token `integer_constant` *represents the set of all integers: that is, all sequences of digits* (0–9), *preceded by an optional sign (+ or −).*

Obviously, we cannot simply enumerate all lexemes.

Use *Regular Expressions.*
Let R be the set of all regular expressions over Σ. Then,

- **Empty String:** $\epsilon \in R$
- **Unit Strings:** $\alpha \in \Sigma \Rightarrow \alpha \in R$
- **Concatenation:** $r_1, r_2 \in R \Rightarrow r_1r_2 \in R$
- **Alternative:** $r_1, r_2 \in R \Rightarrow (r_1 | r_2) \in R$
- **Kleene Closure:** $r \in R \Rightarrow r^* \in R$
Semantics of Regular Expressions

Semantic Function \(\mathcal{L} \): Maps regular expressions to sets of strings.

\[
\begin{align*}
\mathcal{L}(\epsilon) &= \{\epsilon\} \\
\mathcal{L}(\alpha) &= \{\alpha\} \quad (\alpha \in \Sigma) \\
\mathcal{L}(r_1 | r_2) &= \mathcal{L}(r_1) \cup \mathcal{L}(r_2) \\
\mathcal{L}(r_1 \cdot r_2) &= \mathcal{L}(r_1) \cdot \mathcal{L}(r_2) \\
\mathcal{L}(r^*) &= \{\epsilon\} \cup (\mathcal{L}(r) \cdot \mathcal{L}(r^*))
\end{align*}
\]
Computing the Semantics

\[
\mathcal{L}(a) = \{a\} \\
\mathcal{L}(a \mid b) = \mathcal{L}(a) \cup \mathcal{L}(b) \\
\quad = \{a\} \cup \{b\} \\
\quad = \{a, b\}
\]
Computing the Semantics

\[
\mathcal{L}(a) = \{a\}
\]

\[
\mathcal{L}(a | b) = \mathcal{L}(a) \cup \mathcal{L}(b)
\]

\[
= \{a\} \cup \{b\}
\]

\[
= \{a, b\}
\]

\[
\mathcal{L}(ab) = \mathcal{L}(a) \cdot \mathcal{L}(b)
\]

\[
= \{a\} \cdot \{b\}
\]

\[
= \{ab\}
\]
Computing the Semantics

\[\mathcal{L}(a) = \{a\} \]

\[\mathcal{L}(a | b) = \mathcal{L}(a) \cup \mathcal{L}(b) \]

\[= \{a\} \cup \{b\} \]

\[= \{a, b\} \]

\[\mathcal{L}(ab) = \mathcal{L}(a) \cdot \mathcal{L}(b) \]

\[= \{a\} \cdot \{b\} \]

\[= \{ab\} \]

\[\mathcal{L}((a | b)(a | b)) = \mathcal{L}(a | b) \cdot \mathcal{L}(a | b) \]

\[= \{a, b\} \cdot \{a, b\} \]

\[= \{aa, ab, ba, bb\} \]
Computing the Semantics of Closure

\[L(r^*) = \{ \epsilon \} \cup (L(r) \cdot L(r^*)) \]

- \(L_0(r^*) = L(\epsilon) \)
- \(L_1(r^*) = L_0(r^*) \cup L(r) \cdot L_1(r^*) \)
- \(L_2(r^*) = L_1(r^*) \cdot L(r) \cdot L_2(r^*) \)
- \(L_3(r^*) = L_2(r^*) \cup L(r) \cdot L_2(r^*) \)

Each \(L_i \) is a closer approximation to \(L \).
Computing the Semantics of Closure

Example: $\mathcal{L}((a \mid b)^*)$

$$= \{\epsilon\} \cup (\mathcal{L}(a \mid b) \cdot \mathcal{L}((a \mid b)^*))$$

$L_0 = \{\epsilon\}$ \quad Base case

$L_1 = \{\epsilon\} \cup (\{a, b\} \cdot L_0)$

$$= \{\epsilon\} \cup (\{a, b\} \cdot \{\epsilon\})$$

$$= \{\epsilon, a, b\}$$

$L_2 = \{\epsilon\} \cup (\{a, b\} \cdot L_1)$

$$= \{\epsilon\} \cup (\{a, b\} \cdot \{\epsilon, a, b\})$$

$$= \{\epsilon, a, b, aa, ab, ba, bb\}$$

$$\vdots$$
Another Example: $\mathcal{L}((a^*b^*)^*)$

- $\mathcal{L}(a^*) = \{\epsilon, a, aa, \ldots\}$
- $\mathcal{L}(b^*) = \{\epsilon, b, bb, \ldots\}$
- $\mathcal{L}(a^*b^*) = \{\epsilon, a, b, aa, ab, bb, aaa, aab, abb, bbb, \ldots\}$
- $\mathcal{L}((a^*b^*)^*) = \{\epsilon\}$

Union:
- $\mathcal{L}((a^*b^*)^*) = \{\epsilon, a, b, aa, ab, bb, aaa, aab, abb, bbb, \ldots\}$
- $\cup \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, \ldots\}$

- $\cup \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, \ldots\}$

- \vdots

- $= \{\epsilon, a, b, aa, ab, ba, bb, \ldots\}$
Assign “names” to regular expressions.

For example,

\[
\text{digit} \rightarrow 0 | 1 | \cdots | 9
\]

\[
\text{natural} \rightarrow \text{digit digit}^*
\]

\[
\text{integer} \rightarrow (| -)? \text{digit}^+
\]

SHORTHANDS:

- \(a^+ \): Set of strings with one or more occurrences of \(a \).
- \(a^? \): Set of strings with zero or one occurrences of \(a \).

Example:
Regular Definitions: Examples

- **float** → integer . fraction
- **integer** → (+|−)? no_leading_zero
- **no_leading_zero** → (nonzero_digit digit*) | 0
- **fraction** → no_trailing_zero exponent?
- **no_trailing_zero** → (digit* nonzero_digit) | 0
- **exponent** → (E | e) integer
- **digit** → 0 | 1 | ··· | 9
- **nonzero_digit** → 1 | 2 | ··· | 9
Regular Definitions and Lexical Analysis

Regular Expressions and Definitions specify sets of strings over an input alphabet. They can hence be used to specify the set of lexemes associated with a token.

- Used as the pattern language

How do we decide whether an input string belongs to the set of strings specified by a regular expression?
Lexical Analysis

- Regular Expressions and Definitions are used to specify the set of strings (lexemes) corresponding to a *token*.
- An automaton (DFA/NFA) is built from the above specifications.
- Each final state is associated with an *action*: emit the corresponding token.
Specifying Lexical Analysis

Consider a recognizer for integers (sequence of digits) and floats (sequence of digits separated by a decimal point).

\[
[0-9]+ \quad \{ \text{emit(INTEGER_CONSTANT);} \}
\]

\[
[0-9]+\cdot[0-9]+ \quad \{ \text{emit(FLOAT_CONSTANT);} \}
\]
Tool for building lexical analyzers.
Input: lexical specifications (.l file)
Output: C function (yy1ex) that returns a token on each invocation.

```%
[0-9]+ { return(INTEGER_CONSTANT); }

[0-9]+\.[0-9]+ { return(FLOAT_CONSTANT); }

Tokens are simply integers (#define’s).
Lex Specifications

{%
   C/C++ header statements for inclusion
%

Regular Definitions e.g.:
   digit [0-9]
%

Token Specifications e.g.:
   {digit}+
   { return(INTEGER_CONSTANT); }
%

Support functions in C
Regular Expressions in Lex

Adds “syntactic sugar” to regular expressions:

- **Range**: \([0-7]\): Integers from 0 through 7 (inclusive)
  
  \([a-nx-zA-Q]\): Letters a thru n, x thru z and A thru Q.

- **Exception**: \([^/]\): Any character other than /.

- **Definition**: \(\{\text{digit}\}\): Use the previously specified regular definition digit.

- **Special characters**: Connectives of regular expression, convenience features.

  e.g.: \(| \ * \ ^\)

\(| \ a, b, \ ^\ [\ ^a\ b]\)
Special Characters in Lex

| *  +  ?  (  ) | Same as in regular expressions |
| [  ]          | Enclose ranges and exceptions |
| {  }          | Enclose “names” of regular definitions |
| ^             | Used to negate a specified range (in Exception) |
| .             | Match any single character except newline |
| \n, \t        | Escape the next character |
| \n, \t        | Newline and Tab |

For literal matching, enclose special characters in double quotes (") e.g.: " * "

Or use \ to escape. e.g.: \"
### Examples

<table>
<thead>
<tr>
<th><strong>for</strong></th>
<th>Sequence of <code>f, o, r</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;</td>
<td></td>
</tr>
<tr>
<td>.*</td>
<td>Sequence of non-newline characters</td>
</tr>
<tr>
<td>[^*/]+</td>
<td>Sequence of characters except * and /</td>
</tr>
<tr>
<td>&quot;[^&quot;]&quot;*&quot;</td>
<td>Sequence of non-quote characters beginning and ending with a quote</td>
</tr>
<tr>
<td>({letter}</td>
<td>&quot;_&quot;)({letter}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POSIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERL-compatible</td>
</tr>
<tr>
<td>PCRE</td>
</tr>
</tbody>
</table>
A Complete Example

```c
#include <stdio.h>
#include "tokens.h"

digit [0-9]
hexdigit [0-9a-f]

"+" { return(PLUS); }
"-" { return(MINUS); }
{digit}+ { return(INTEGER_CONSTANT); }
{digit}+"."{digit}+ { return(FLOAT_CONSTANT); }
.
{ return(SYNTAX_ERROR); }
```
Actions

Actions are attached to final states.

- Distinguish the different final states.
- Used to return tokens.
- Can be used to set attribute values.
- Fragment of C code (blocks enclosed by ‘{’ and ‘}’).
Attributes

Additional information about a token’s lexeme.

- Stored in variable `yy1val`.
- Type of attributes (usually a union) specified by `YYSTYPE`.
- Additional variables:
  - `yytext`: Lexeme (*Actual text string*)
  - `yyleng`: length of string in `yytext`
  - `yylineno`: Current line number (number of ‘\n’ seen thus far)
    - enabled by `%option yylineno`
Priority of matching

What if an input string matches more than one pattern?

- A pattern that matches the longest string is chosen.
  Example: `ifs` is matched with an identifier, not the keyword `if`.
- Of patterns that match strings of same length, the first (from the top of file) is chosen.
  - `while` is matched as an identifier, not the keyword `while`.
  - Given `if1`, a match will be announced for the keyword `if`, with 1 being considered as part of the next token.
Constructing Scanners using (f)lex

- Scanner specifications: *specifications*.l
  
  *(f)lex*  
  
  *specifications*.l $\rightarrow$ *lex.yy.c*

- Generated scanner in *lex.yy.c*
  
  *(g)cc*  
  
  *lex.yy.c* $\rightarrow$ executable

- *yywrap()*: hook for signalling end of file.

- Use `-lf1` (flex) or `-ll` (lex) flags at link time to include default function *yywrap()* that always returns 1.
Recognizers

Construct *automata* that recognize strings belonging to a language.

- **Finite State Automata** $\Rightarrow$ Regular Languages
  - Finite State $\Rightarrow$ cannot maintain arbitrary counts.

- **Push Down Automata** $\Rightarrow$ Context-free Languages
  - Stack is used to maintain counter, but only one counter can go arbitrarily high.
Finite State Automata

Represented by a labeled directed graph.

- A finite set of *states* (vertices).
- *Transitions* between states (edges).
- *Labels* on transitions are drawn from $\Sigma \cup \{\epsilon\}$.
- One distinguished *start* state.
- One or more distinguished *final* states.
Finite State Automata: An Example

Consider the Regular Expression \((a \mid b)^*a(a \mid b)\).

\(L((a \mid b)^*a(a \mid b)) = \{aa, ab, aaa, aab, baa, bab, aaaa, aaab, abaa, abab, baaa, \ldots\} \).
Consider the Regular Expression \((a \mid b)^*a(a \mid b)\).

\(\mathcal{L}((a \mid b)^*a(a \mid b)) = \{\text{aa, ab, aaa, aab, baa, bab, aaaa, aaab, abaa, abab, baaa, \ldots}\}\).

The following automaton determines whether an input string belongs to \(\mathcal{L}((a \mid b)^*a(a \mid b))\):
Deterministic Vs Nondeterministic FSA

\[(a \mid b)^*a(a \mid b)\]:

Nondeterministic: (NFA)

Deterministic: (DFA)
Acceptance Criterion

A finite state automaton (NFA or DFA) accepts an input string $x$ if beginning from the start state, we can trace some path through the automaton such that the sequence of edge labels spells $x$ and end in a final state.

Or, there exists a path in the graph from the start state to a final state such that the sequence of labels on the path spells out $x$. 
NFA vs. DFA

For every NFA, there is a DFA that accepts the same set of strings.

- NFA may have transitions labeled by $\epsilon$.
  
  (Spontaneous transitions)

- All transition labels in a DFA belong to $\Sigma$.

- For some string $x$, there may be many accepting paths in an NFA.

- For all strings $x$, there is one unique accepting path in a DFA.

- Usually, an input string can be recognized faster with a DFA.

- NFAs are typically smaller than the corresponding DFAs.
### NFA vs. DFA

\[ R = \text{Size of Regular Expression} \]
\[ N = \text{Length of Input String} \]

<table>
<thead>
<tr>
<th></th>
<th>NFA</th>
<th>DFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of Automaton</td>
<td>( O(R) )</td>
<td>( O(2^R) )</td>
</tr>
<tr>
<td>Recognition time per input string</td>
<td>( O(N \times R) )</td>
<td>( O(N) )</td>
</tr>
</tbody>
</table>

**Total cost**

\[ \min(2^R, N) \]
Thompson’s Construction: For every regular expression $r$, derive an NFA $N(r)$ with unique start and final states.

- $\epsilon$
Regular Expressions to NFA (contd.)

- For the concatenation of regular expressions $r_1r_2$, the non-deterministic finite automaton (NFA) $N(r_1r_2)$ is constructed by concatenating the NFAs of $N(r_1)$ and $N(r_2)$.

- For the Kleene star $r^*$, the NFA $N(r^*)$ is constructed by adding a loop on the transitions leading to the final state of $N(r)$.
Example

\[(a \mid b)^*a(a \mid b)\]:
Expressive Power of RE Vs FSA

- We just saw that every RE can be converted into an equivalent NFA
  - Implication: NFAs are at least as expressive as REs
Expressive Power of RE Vs FSA

- We just saw that every RE can be converted into an equivalent NFA
  - Implication: NFAs are at least as expressive as REs

- It can also be shown that every NFA can be converted into an equivalent RE
  - Implication: REs are at least as expressive as NFAs
Expressive Power of RE Vs FSA

- We just saw that every RE can be converted into an equivalent NFA
  - Implication: NFAs are at least as expressive as REs

- It can also be shown that every NFA can be converted into an equivalent RE
  - Implication: REs are at least as expressive as NFAs

**Implication:** REs and NFAs have the same expressive power
Expressive Power of RE Vs FSA

- We just saw that every RE can be converted into an equivalent NFA
  - Implication: NFAs are at least as expressive as REs

- It can also be shown that every NFA can be converted into an equivalent RE
  - Implication: REs are at least as expressive as NFAs

- **Implication:** REs and NFAs have the same expressive power

- Where do DFAs stand?
  - Every DFA is an NFA
  - We will show that every NFA can be converted into an equivalent DFA
Expressive Power of RE Vs FSA

- We just saw that every RE can be converted into an equivalent NFA
  - Implication: NFAs are at least as expressive as REs

- It can also be shown that every NFA can be converted into an equivalent RE
  - Implication: REs are at least as expressive as NFAs

**Implication:** REs and NFAs have the same expressive power

- Where do DFAs stand?
  - Every DFA is an NFA
  - We will show that every NFA can be converted into an equivalent DFA

**Implication:** RE, NFA and DFA are equivalent
Recognition with a DFA

Is $abab \in \mathcal{L}((a \mid b)^*a(a \mid b))$?

Input: $a \ b \ a \ b$

Path: 1 2 4 2 4 Accept
Recognition with an NFA

Is $abab \in \mathcal{L}((a \mid b)^*a(a \mid b))$?

Input: $a \ b \ a \ b$

Path 1: $1$

Path 2: $1 \ 1 \ 1$

Path 3: $1 \ 2 \ 3$

All Paths: $\{1\}, \{1, 2\}, \{1, 3\}, \{1, 2\}, \{1, 3\}$

Accept
Recognition with an NFA

Is $abab \in \mathcal{L}((a \mid b)^*a(a \mid b))$?

Input: $a \ b \ a \ b$

Path 1: $1 \ 1$
Recognition with an NFA

Is \textit{abab} \in \mathcal{L}((a \mid b)^{*}a(a \mid b))?

\[ \text{Input: } \quad a \quad b \quad a \quad b \]

\[ \text{Path 1: } \quad 1 \quad 1 \quad 1 \]

\[ \text{Path 2: } \quad 1 \quad 1 \quad 1 \quad \text{Accept} \]

\[ \text{Path 3: } \quad 1 \quad 2 \quad 3 \quad \bot \quad \bot \]

\[ \text{All Paths: } \{1\} \quad \{1, 2\} \quad \{1, 3\} \quad \{1, 2\} \quad \{1, 3\} \quad \text{Accept} \]
Recognition with an NFA

Is \( abab \in \mathcal{L}((a \mid b)^*a(a \mid b)) \)?

Input: \( a \ b \ a \ b \)
Path 1: 1 1 1 1
Recognition with an NFA

Is $abab \in \mathcal{L}((a \mid b)^{*}a(a \mid b))$?

Input: $a \ b \ a \ b$

Path 1: 1 1 1 1 1

Path 2: 1 1 1

Path 3: 1 2 3 ⊥ ⊥
Recognition with an NFA

Is \( abab \in \mathcal{L}((a \mid b)^*a(a \mid b)) \)?

\[
\begin{align*}
\text{Input:} & \quad a \quad b \quad a \quad b \\
\text{Path 1:} & \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \\
\text{Path 2:} & \quad 1 \quad 1 \quad 1
\end{align*}
\]
Recognition with an NFA

Is \( \text{abab} \in \mathcal{L}((a \mid b)^*a(a \mid b)) \)?

![NFA Diagram]

Input: a b a b
Path 1: 1 1 1 1 1
Path 2: 1 1 1 2
Recognition with an NFA

Is \( abab \in \mathcal{L}((a \mid b)^*a(a \mid b)) \)?

Input: \( a \ b \ a \ b \)

Path 1: 1 1 1 1 1 1

Path 2: 1 1 1 2 3 Accept
Recognition with an NFA

Is \( abab \in L((a | b)^*a(a | b)) \)?

Input: \( a \ b \ a \ b \)

Path 1: \( 1 \ 1 \ 1 \ 1 \ 1 \ 1 \)

Path 2: \( 1 \ 1 \ 1 \ 2 \ 3 \) Accept

Path 3: \( 1 \ 2 \ 3 \ \bot \ \bot \)

\( N \times R \)
Recognition with an NFA

Is \( abab \in \mathcal{L}((a \mid b)^{*}a(a \mid b)) \)?

Input:

Path 1: 1 1 1 1 1
Path 2: 1 1 1 2 3
Path 3: 1 2 3 ⊥ ⊥

All Paths: \{1\} \{1, 2\} \{1, 3\} \{1, 2\} \{1, 3\} Accept
Recognition with an NFA (contd.)

Is $aaab \in \mathcal{L}((a \mid b)^*a(a \mid b))$?

Input: $a \ a \ a \ b$

Path 1: $1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$

Path 2: $1 \ 1 \ 1 \ 1 \ 1 \ 2$

Path 3: $1 \ 1 \ 1 \ 2 \ 3 \ Accept$

Path 4: $1 \ 1 \ 2 \ 3 \ \bot$

Path 5: $1 \ 2 \ 3 \ \bot \ \bot$

All Paths: $\{1\} \ \{1,2\} \ \{1,2,3\} \ \{1,2,3\} \ \{1,2,3\} \ Accept$
Recognition with an NFA (contd.)

Is \(aabb \in \mathcal{L}((a | b)^*a(a | b))\)?

Input:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path 1: 1 1 1 1 1 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Path 2: 1 1 2 3 (\perp)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Path 3: 1 2 3 (\perp) (\perp)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Paths {1} {1, 2} {1, 2, 3} {1, 3} {1} REJECT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Converting NFA to DFA

NFA  S  DFA  P(S)
Converting NFA to DFA (contd.)

Subset construction

Given a set $S$ of NFA states,

- compute $S_\epsilon = \epsilon$-closure($S$): $S_\epsilon$ is the set of all NFA states reachable by zero or more $\epsilon$-transitions from $S$.

- compute $S_\alpha = \text{goto}(S, \alpha)$:
  - $S'$ is the set of all NFA states reachable from $S$ by taking a transition labeled $\alpha$.
  - $S_\alpha = \epsilon$-closure($S'$).
Converting NFA to DFA (contd).

Each state in DFA corresponds to a *set of states* in NFA.

Start state of DFA = $\epsilon$-closure(start state of NFA).

From a state $s$ in DFA that corresponds to a set of states $S$ in NFA:

1. add a transition labeled $\alpha$ to state $s'$ that corresponds to a non-empty $S'$ in NFA,

2. such that $S' = \text{goto}(S, \alpha)$.

$s$ is a state in DFA such that the corresponding set of states $S$ in NFA contains a final state of NFA,

$\iff s$ is a final state of DFA
NFA → DFA: An Example

\[ \epsilon\text{-closure}(\{1\}) = \{1\} \]
\[ \text{goto}(\{1\}, a) = \{1, 2\} \]
\[ \text{goto}(\{1\}, b) = \{1\} \]
\[ \text{goto}(\{1, 2\}, a) = \{1, 2, 3\} \]
\[ \text{goto}(\{1, 2\}, b) = \{1, 3\} \]
\[ \text{goto}(\{1, 2, 3\}, a) = \{1, 2, 3\} \]
\]
NFA → DFA: An Example (contd.)

\[
\begin{align*}
\epsilon\text{-closure}(&\{1\}) = \{1\} \\
goto (&\{1\}, a) = \{1, 2\} \\
goto (&\{1\}, b) = \{1\} \\
goto (&\{1, 2\}, a) = \{1, 2, 3\} \\
goto (&\{1, 2\}, b) = \{1, 3\} \\
goto (&\{1, 2, 3\}, a) = \{1, 2, 3\} \\
goto (&\{1, 2, 3\}, b) = \{1\} \\
goto (&\{1, 3\}, a) = \{1, 2\} \\
goto (&\{1, 3\}, b) = \{1\}
\end{align*}
\]
Lexical Analysis

Intro  Regular Expressions  Lex  FSA  RE to FSA

NFA → DFA: An Example (contd.)

goto(\{1\}, a) = \{1, 2\}
goto(\{1\}, b) = \{1\}
goto(\{1, 2\}, a) = \{1, 2, 3\}
goto(\{1, 2\}, b) = \{1, 3\}
goto(\{1, 2, 3\}, a) = \{1, 2, 3\}

\vdots

\begin{tikzpicture}
  \node (s1) at (0,0) [shape=circle,draw] {1};
  \node (s2) at (1,0) [shape=circle,draw] {1,2};
  \node (s3) at (2,0) [shape=circle,draw] {1,2,3};

  \draw[->] (s1) -- node [above] {a} (s2);
  \draw[->] (s2) -- node [above] {a} (s3);
  \draw[->] (s3) -- node [above] {a} (s1);
  \draw[->] (s1) -- node [below] {b} (s3);
  \draw[->] (s2) -- node [below] {a} (s3);
  \draw[->] (s3) -- node [below] {b} (s2);

  \end{tikzpicture}
Converting RE to FSA

**NFA:** Compile RE to NFA (Thompson’s construction [1968]), then match.

**DFA:** Compile to DFA, then match

(A) Convert NFA to DFA (Rabin-Scott construction), minimize

(B) Direct construction: RE derivatives [Brzozowski 1964].
   - More convenient and a bit more general than (A).

(C) Direct construction of [McNaughton Yamada 1960]
   - Can be seen as a (more easily implemented) specialization of (B).
   - Used in Lex and its derivatives, i.e., most compilers use this algorithm.
Converting RE to FSA

- NFA approach takes \( O(n) \) NFA construction plus \( O(nm) \) matching, so has worst case \( O(nm) \) complexity.

- DFA approach takes \( O(2^n) \) construction plus \( O(m) \) match, so has worst case \( O(2^n + m) \) complexity.

- So, why bother with DFA?
  - In many practical applications, the pattern is fixed and small, while the subject text is very large. So, the \( O(mn) \) term is dominant over \( O(2^n) \)
  - For many important cases, DFAs are of polynomial size
  - In many applications, exponential blow-ups don’t occur, e.g., compilers.
Derivative of Regular Expressions

The derivative of a regular expression \( R \) w.r.t. a symbol \( x \) denoted \( \partial_x[R] \) is another regular expression \( R' \) such that \( L(R) = L(xR') \).

Basically, \( \partial_x[R] \) captures the suffixes of those strings that match \( R \) and start with \( x \).

Examples

- \( \partial_a[a(b|c)] = b|c \)
- \( \partial_a[(a|b)cd] = cd \)
- \( \partial_a[(a|b)* cd] = (a|b)* cd \)
- \( \partial_c[(a|b)* cd] = d \)
- \( \partial_d[(a|b)* cd] = \emptyset \)

\( \emptyset = \{ \} \)
\( \epsilon = \{ \epsilon \} \)
**Definition of RE Derivative (1)**

\[
\text{inclEps}(R): \text{A predicate that returns true if } \epsilon \in \mathcal{L}(R) \\
\text{inclEps}(a) = \text{false, } \forall a \in \Sigma \\
\text{inclEps}(R_1|R_2) = \text{inclEps}(R_1) \lor \text{inclEps}(R_2) \\
\text{inclEps}(R_1R_2) = \text{inclEps}(R_1) \land \text{inclEps}(R_2) \\
\text{inclEps}(R^*) = \text{true}
\]

Note \textit{inclEps} can be computed in linear-time.
Definition of RE Derivative (2)

\[ \partial_a[\epsilon] = \emptyset \]

\[ \partial_a[a] = \epsilon \]

\[ \partial_a[b] = \emptyset \]

\[ \partial_a[R_1|R_2] = \partial_a[R_1]|\partial_a[R_2] \]

\[ \partial_a[R^*] = \partial_a[R]R^* \]

\[ \partial_a[R_1R_2] = \partial_a[R_1]R_2|\partial_a[R_2] \]

if inclEps(\(R_1\))

\[ = \partial_a[R_1]R_2 \]

otherwise

\[ \quad \partial_a(ab \mid ac) = \partial_a(ab)|\partial_a(ac) = b \mid c \]

\[ R^* = \epsilon | RR^* \]

Note: \( \mathcal{L}(\epsilon) = \{ \epsilon \} \neq \mathcal{L}(\emptyset) = \{ \} \)
Consider $R_1 = (a|b)^* a(a|b)$

$\partial_a[R_1] = R_1|(a|b) = R_2$

$\partial_b[R_1] = R_1$

$\partial_a[R_2] = R_1|(a|b)|\epsilon = R_3$

$\partial_b[R_2] = R_1|\epsilon = R_4$

$\partial_a[R_3] = R_1|(a|b)|\epsilon = R_3$

$\partial_b[R_3] = R_1|\epsilon = R_4$

$\partial_a[R_4] = R_1|(a|b) = R_2$

$\partial_b[R_4] = R_1$
McNaughton-Yamada Construction

Can be viewed as a simpler way to represent derivatives

- Positions in RE are numbered, e.g., \( 0(a^1|b^2)^*a^3(a^4|b^5)^6 \).

- A derivative is identified by its beginning position in the RE
  - Or more generally, a derivative is identified by a set of positions

- Each DFA state corresponds to a position set (pset)

\[
R_1 \equiv \{1, 2, 3\} \\
R_2 \equiv \{1, 2, 3, 4, 5\} \\
R_3 \equiv \{1, 2, 3, 4, 5, 6\} \\
R_4 \equiv \{1, 2, 3, 6\}
\]
McNaughton-Yamada: Definitions

first($P$): Yields the set of first symbols of RE denoted by pset $P$

Determines the transitions out of DFA state for $P$

Example: For the RE $(a^1|b^2) \ast a^3(a^4|b^5)\$, $first(\{1, 2, 3\}) = \{a, b\}$

$P|_s$: Subset of $P$ that contain $s$, i.e., $\{p \in P \mid R \text{ contains } s \text{ at } p\}$

Example: $\{1, 2, 3\}|_a = \{1, 3\}$, $\{1, 2, 4, 5\}|_b = \{2, 5\}$

follow($P$): set of positions immediately after $P$, i.e., $\bigcup_{p \in P} follow(\{p\})$

Definition is very similar to derivatives

Example: $follow(\{3, 4\}) = \{4, 5, 6\}$

follow(\{1\}) = \{1, 2, 3\}
McNaughton-Yamada Construction (2)

BuildMY(R, pset)

Create an automaton state $S$ labeled $pset$

Mark this state as final if $\$\$ occurs in $R$ at $pset$

foreach symbol $x \in first(pset) - \{\$\}$ do

Call BuildMY($R, follow(pset|x)$) if hasn’t previously been called

Create a transition on $x$ from $S$ to

the root of this subautomaton

DFA construction begins with the call BuildMY($R, follow(\{0\})$). The root of the resulting automaton is marked as a start state.
**BuildMY Illustration on**

$$R = 0(a^1|b^2)^* a^3(a^4|b^5)^6$$

### Computations Needed

\[
\begin{align*}
\text{follow}([0]) &= \{1, 2, 3\} \\
\text{follow}([1]) &= \text{follow}([2]) = \{1, 2, 3\} \\
\text{follow}([3]) &= \{4, 5\} \\
\text{follow}([4]) &= \text{follow}([5]) = \{6\} \\
\end{align*}
\]

\[
\begin{align*}
\text{follow}([1, 2, 3])_a &= \{1, 3\}, \quad \text{follow}([1, 2, 3])_b = \{2\} \\
\text{follow}([1, 3]) &= \{1, 2, 3, 4, 5\} \\
\text{follow}([1, 2, 3, 4, 5])_a &= \{1, 3, 4\} \\
\text{follow}([1, 2, 3, 4, 5])_b = \{2, 5\} \\
\text{follow}([1, 3, 4]) &= \{1, 2, 3, 4, 5, 6\} \\
\text{follow}([2, 5]) &= \{1, 2, 3, 6\} \\
\text{follow}([1, 2, 3, 4, 5, 6])_a &= \{1, 3, 4\} \\
\text{follow}([1, 2, 3, 4, 5, 6])_b = \{2, 5\} \\
\text{follow}([1, 2, 3, 6])_a &= \{1, 3\} \quad \text{follow}([1, 2, 3, 6])_b = \{2\}
\end{align*}
\]

### Resulting Automaton

![Resulting Automaton Diagram](image)

<table>
<thead>
<tr>
<th>State</th>
<th>Pset</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{1,2,3}</td>
</tr>
<tr>
<td>2</td>
<td>{1,2,3,4,5}</td>
</tr>
<tr>
<td>3</td>
<td>{1,2,3,4,5,6}</td>
</tr>
<tr>
<td>4</td>
<td>{1,2,3,6}</td>
</tr>
</tbody>
</table>
McNaughton-Yamada (MY) Vs Derivatives

- Conceptually very similar

- MY takes a bit longer to describe, and its correctness a bit harder to follow.

- MY is also more mechanical, and hence is found in most implementations

- Derivatives approach is more general
  - Can support some extensions to REs, e.g., complement operator
  - Can avoid some redundant states during construction
    - Example: For $ac|bc$, DFA built by derivative approach has 3 states, but the one built by MY construction has 4 states
      The derivative approach merges the two $c$’s in the RE, but with MY, the two $c$’s have different positions, and hence operations on them are not shared.
Avoiding Redundant States

- Automata built by MY is not optimal
  - Automata minimization algorithms can be used to produce an optimal automaton.

- Derivatives approach associates DFA states with derivatives, but does not say how to determine equality among derivatives.

- There is a spectrum of techniques to determine RE equality
  - MY is the simplest: relies on syntactic identity
  - At the other end of the spectrum, we could use a complete decision procedure for RE equality.
    - In this case, the derivative approach yields the optimal RE!
  - In practice we would tend to use something in the middle
    - Trade off some power for ease/efficiency of implementation
RE to DFA conversion: Complexity

- Given DFA size can be exponential in the worst case, we obviously must accept worst-case exponential complexity.

- For the derivatives approach, it is not immediately obvious that it even terminates!

  - More obvious for McNaughton-Yamada approach, since DFA states correspond to position sets, of which there are only $2^n$.

- Derivative computation is linear in RE size in the general case.

- So, overall complexity is $O(n2^n)$

- Complexity can be improved, but the worst-case $2^n$ takes away some of the rationale for doing so.

  - Instead, we focus on improving performance in many frequently occurring special cases where better complexity is achievable.
Using States in Lex

- Some regular languages are more easily expressed as FSA
  - Set of all strings representing binary numbers divisible by 3

- Lex allows you to use FSA concepts using *start states*

```c
%x MOD1 MOD2
"0" { }
"1" {BEGIN MOD1}
<MOD1> "0" {BEGIN MOD2}
<MOD1> "1" {BEGIN 0}
```
Other Special Directives

- **ECHO** causes Lex to echo current lexeme
- **REJECT** causes abandonment of current match in favor of the next.

Example

```
a |
ab |
abc |
abcd {ECHO; REJECT;}
. | \n { /* eat up the character */ }
```
Implementing a Scanner

\[ \text{transition} : \text{state} \times \Sigma \rightarrow \text{state} \]

algorithm scanner() {
    current_state = start state;
    while (1) {
        c = getc(); /* on end of file, ... */
        if defined(transition(current_state, c))
            current_state = transition(current_state, c);
        else
            return s;
    }
}
Implementing a Scanner (contd.)

Implementing the *transition* function:

- **Simplest**: 2-D array.
  
  Space inefficient.

- Traditionally compressed using row/colum equivalence. (default on `flex`)
  
  Good space-time tradeoff.

- Further table compression using various techniques:
  
  - Example: **RDM (Row Displacement Method)**:
    
    Store rows in overlapping manner using 2 1-D arrays.
  
  Smaller tables, but longer access times.
Lexical Analysis: A Summary

Convert a stream of characters into a stream of tokens.
- Make rest of compiler independent of character set
- Strip off comments
- Recognize line numbers
- Ignore white space characters
- Process macros (definitions and uses)
- Interface with symbol (name) table.