
Translation Strategy

Classic So�ware Engineering Problem

• Objective: Translate a program in a high level language into e�icient executable
code.

• Strategy: Divide translation process into a series of phases.

Each phase manages some particular aspect of translation.

Interfaces between phases governed by specific intermediate forms.

1 / 12

Translation Steps
Source

Lexical Analysis

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

Code Optimization(s)

Final code generation

Target

COMPILATION

Program

Program

Syntax Analysis Phase: Recognizes “sentences” in the program using
the syntax of the language

Semantic Analysis Phase: Infers information about the program using
the semantics of the language

Intermediate Code Generation Phase: Generates “abstract” code
based on the syntactic structure of the program and the semantic
information from Phase 2.

Optimization Phase: Refines the generated code using a series of
optimizing transformations.

Final Code Generation Phase: Translates the abstract intermediate
code into specific machine instructions.

2 / 12

Translation Steps: Lexical Analysis (Scanning Phase)
Source

Lexical Analysis

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

Code Optimization(s)

Final code generation

Target

COMPILATION

Program

Program

Convert the stream of characters representing input program into a
sequence of tokens.

Tokens are the “words” of the programming language.

For instance, the sequence of characters “static int” is
recognized as two tokens, representing the two words “static” and
“int”.

The sequence of characters “*x++” is recognized as three tokens,
representing “*”, “x” and “++”.

3 / 12

Translation Steps: Parsing (Syntax Analysis Phase)
Source

Lexical Analysis

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

Code Optimization(s)

Final code generation

Target

COMPILATION

Program

Program

Uncover the structure of a sentence in the program from a stream of
tokens.

For instance, the phrase “x = -y”, which is recognized as four
tokens, representing “x”, “=” and “-” and “y”, has the structure =(x,
-(y)), i.e., an assignment expression, that operates on “x” and the
expression “-(y)”.

Build a tree called a parse tree that reflects the structure of the input
sentence.

Typically, compilers build an abstract syntax tree directly, skipping the

construction of parse trees.

4 / 12

Translation Steps: Abstract Syntax Tree (AST)
Source

Lexical Analysis

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

Code Optimization(s)

Final code generation

Target

COMPILATION

Program

Program

Represents the syntactic structure of the program, hiding a few
details that are irrelevent to later phases of compilation.

For instance, consider a statement of the form:

if (m == 0) S1 else S2

where S1 and S2 stand for some block of statements. A possible
AST for this statement is:

If-then-else

AST for S2AST for S1

==

0m

5 / 12

Translation Steps: Type Checking (Semantic Analysis)
Source

Lexical Analysis

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

Code Optimization(s)

Final code generation

Target

COMPILATION

Program

Program

Decorate the AST with semantic information that is necessary in
later phases of translation.

For instance, the AST
If-then-else

AST for S2AST for S1

==

0m

becomes
If-then-else

AST for S1 AST for S20

== : boolean

: integer : integerm

6 / 12

Translation Steps: Intermediate Code Generation
Source

Lexical Analysis

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

Code Optimization(s)

Final code generation

Target

COMPILATION

Program

Program

Translate each sub-tree of the decorated AST into intermediate code.

Intermediate code hides many machine-level details, but has
instruction-level mapping to many assembly languages.

Main motivation: portability.

7 / 12

Translation Steps: Intermediate Code Generation Example
Source

Lexical Analysis

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

Code Optimization(s)

Final code generation

Target

COMPILATION

Program

Program

If-then-else

AST for S1 AST for S20

== : boolean

: integer : integerm

becomes R1 ← mem(m)

cmp R1, 0

jz .L1

jmp .L2

.L1:

.... code for S1

jmp .L3

.L2:

.... code for S2

jmp .L3

.L3:

8 / 12

Translation Steps: Code Optimization
Source

Lexical Analysis

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

Code Optimization(s)

Final code generation

Target

COMPILATION

Program

Program

Apply a series of transformations to improve the time and space
e�iciency of the generated code.

Peephole optimizations: generate new instructions by
combining/expanding on a small number of consecutive
instructions.

Intraprocedural optimizations: reorder, remove or add
instructions to change the structure of generated code within

each function. Code transformations guided by static analysis.

Interprocedural optimizations: Guided by interprocedural static
analysis.

9 / 12

Translation Steps: Final Code Generation
Source

Lexical Analysis

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

Code Optimization(s)

Final code generation

Target

COMPILATION

Program

Program

Map instructions in the intermediate code to specific machine
instructions.

Supports standard object file formats.

Generates su�icient information to enable symbolic
debugging.

10 / 12

Translation Steps: Final Code Generation Example
Source

Lexical Analysis

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

Code Optimization(s)

Final code generation

Target

COMPILATION

Program

Program

R1 ← mem(m)

cmp R1, 0

jz .L1

jmp .L2

.L1:

.... code

for S1

jmp .L3

.L2:

.... code

for S2

jmp .L3

.L3:

=⇒ movl 8(%ebp), %esi

testl %esi, %esi

jne .L2

.L1:

.... code for S1

jmp .L3

.L2:

.... code for S2

.L3:

11 / 12

Broader Applications of Languages

• Command Interpreters: bash, ksh, Powershell, ...

• Programming: Java, Python, C++, Rust, Go, Haskell, Scala, OCaml, ...

• Document Structuring: LATEX, HTML, RTF, troff, ...

• Page Definition: PDF, PostScript, ...

• Databases: SQL, ...

• Hardware Design: VHDL, VeriLog, ...

• Domain-Specific Languages (DSL)

12 / 12

