Translation Strategy

Classic Software Engineering Problem

e Objective: Translate a program in a high level language into efficient executable
code.

e Strategy: Divide translation process into a series of phases.

Each phase manages some particular aspect of translation.

Interfaces between phases governed by specific intermediate forms.

1/12

Translation Steps

//"'S’oﬁéé"’“ ~
~._Program _~

COMPILATI(SNIJ

Lexical Analysis

I

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

I

Code Optimization(s)

I

Final code generation

Target
Program

Syntax Analysis Phase: Recognizes “sentences” in the program using
the syntax of the language

Semantic Analysis Phase: Infers information about the program using
the semantics of the language

Intermediate Code Generation Phase: Generates “abstract” code
based on the syntactic structure of the program and the semantic
information from Phase 2.

Optimization Phase: Refines the generated code using a series of
optimizing transformations.

Final Code Generation Phase: Translates the abstract intermediate

code into specific machine instructions.
2/12

Translation Steps: Lexical Analysis (Scanning Phase)

//"'S’oﬁéé"’“ ~
~._Program _~

COMPILATI(SNIJ

Lexical Analysis

I

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

I

Code Optimization(s)

I

Final code generation

Target
Program

Convert the stream of characters representing input program into a
sequence of tokens.

Tokens are the “words” of the programming language.

For instance, the sequence of characters “static int”is
recognized as two tokens, representing the two words “static” and
e »

int”.

The sequence of characters “*x++” is recognized as three tokens,
. Wk 9 3 ”»
representing “*”, “x” and “++”.

3/12

Translation Steps: Parsing (Syntax Analysis Phase)

//"'Sbﬁéé""’* ~
~._Program _~

COMPILATI(SNIJ

Lexical Analysis

I

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

I

Code Optimization(s)

I

Final code generation

Target
Program

Uncover the structure of a sentence in the program from a stream of

tokens.

For instance, the phrase “x = -y”, which is recognized as four
tokens, representing “x”, “=” and “-” and “y”, has the structure =(x,
-(y)), i.e., an assignment expression, that operates on “x” and the

expression “~(y)”.

Build a tree called a parse tree that reflects the structure of the input

sentence.

Typically, compilers build an abstract syntax tree directly, skipping the

construction of parse trees.

4/12

Translation Steps: Abstract Syntax Tree (AST)

//"'Sbﬁéé""’* ~
~._Program _~

COMPILATI(SNIJ

Lexical Analysis

I

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

I

Code Optimization(s)

I

Final code generation

Target
Program

@ Represents the syntactic structure of the program, hiding a few
details that are irrelevent to later phases of compilation.

@ For instance, consider a statement of the form:
if (m == 0) S1 else S2
where S1 and S2 stand for some block of statements. A possible
AST for this statement is:
lf-then-else

m/= =\0 A

AST for S1 AST for S2

5/12

Translation Steps: Type Checking (Semantic Analysis)

(/’Sbﬁéé'""‘
—_Program_
COMPILATION—V|7

Lexical Analysis

I

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

I

Code Optimization(s)

I

Final code generation

Target
Program

@ Decorate the AST with semantic information that is necessary in
later phases of translation.

@ For instance, the AST
If-then-else

AT

AST for S1 AST for S2

becomes
If-then-else

== boolean

N

m: integer 0 :inteqger ~ ASTforSI AST for S2

6/12

Translation Steps: Intermediate Code Generation

<//§0E6§%
_Program

COMPILATION—V|7

Lexical Analysis

I

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

I

Code Optimization(s)

I

Final code generation

Target
Program

@ Translate each sub-tree of the decorated AST into intermediate code.

@ Intermediate code hides many machine-level details, but has

instruction-level mapping to many assembly languages.

@ Main motivation: portability.

7/12

Translation Steps: Intermediate Code Generation Example

COMPILATION

Fi

(“Source
_Program

Semantic Analysi
g., type checking

Lexical Analysis

Parsing

ntermediate code
Generation

bde Optimization(

al code generati

Target
Program

s)

on

== boolean

/

Mm: integer

If-then-else
0 :integer AST for S1

AST for S2

becomes

.L1:

.L2:

.L3:

R1 < mem(m)

cmp
jz

jmp
jmp

jmp

R1,
.L1
L2

code for S1

.L3

code for S2

.L3

8/12

Translation Steps: Code Optimization

//"'Sbﬁéé'"“ ~
~._Program _~

COMPI LATION—V|7/

Lexical Analysis

I

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

I

Code Optimization(s)

I

Final code generation

Target
Program

Apply a series of transformations to improve the time and space

efficiency of the generated code.

@ Peephole optimizations: generate new instructions by
combining/expanding on a small number of consecutive

instructions.

@ Intraprocedural optimizations: reorder, remove or add
instructions to change the structure of generated code within

each function. Code transformations guided by static analysis.

@ Interprocedural optimizations: Guided by interprocedural static

analysis.

9/12

Translation Steps: Final Code Generation

//"'Sbﬁéé'"”*
~_Program

COMP ILATION—V|7/

Lexical Analysis

I

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

I

Code Optimization(s)

I

Final code generation

Target
Program

@ Map instructions in the intermediate code to specific machine

instructions.
@ Supports standard object file formats.

e Generates sufficient information to enable symbolic

debugging.

10/12

Translation Steps: Final Code Generation Example

“Soure -
—_Program
COMPILATION

Lexical Analysis

Fi

al code generation

Target
Program

cmp R1, O
jz .L1
jmp .L2 .L1:
.L1:
.. code
for S1 .L2:
jmp .L3
.L2: .L3:
.. code
for S2
jmp .L3
.L3:

R1 < mem(m) —

movl 8(%ebp), %esi
testl %esi, %esi
jne .L2

code for S1
jmp .L3

code for S2

11/12

Broader Applications of Languages

e Command Interpreters: bash, ksh, Powershell, ...

e Programming: Java, Python, C++, Rust, Go, Haskell, Scala, OCaml, ...
e Document Structuring: BIEX, HTML, RTF, troff, ..

e Page Definition: PDF, PostScript, ...

e Databases: SQL, ...

e Hardware Design: VHDL, VerilLog, ...

e Domain-Specific Languages (DSL)

12/12

