Source
Program
COMPILATION
Lexical Analysis
Semantic Analysis
e.g., type checking
ntermediate code
Generation

ode Optimization(s)

al code generation

C

Fi

1/26

R

R

R

Syntax-Directed Translation

Technique used to build semantic information for large structures, based on its syntax.

In a compiler, Syntax-Directed Translation is used for

e Constructing Abstract Syntax Tree -

e Type checking
o Intermediate code generation

2/26

R

R

The Essence of Syntax-Directed Translation

The semantics (meaning) of the various constructs in the language is viewed as

attributes of the corresponding grammar symbols.

Example: Sequence of characters 495
——

@ grammar symbol TOK_INT

. . \/&ZMU

@ meaning = integer 495 S
—

@ is an attribute of TOK_INT(yylval.int_val).

Attributes are associated with Terminal as well as Nonterminal symbols.

3/26

R

R

R

R

R

R

R

R

E — ELE
E — E+E
E — id T

£ — 5;15; {E.val := E;.val x E,.val} [=—
E — E+E {7:'.val = Ey.val + Ey.val}|\=—
E — int {E.val .= int.val} - .

4/26

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

12 2
L $ p
F'l:: — E*E {E.val := E,.val x E,.val}
E — E+E {E.val := E;.val + E,.val}
E — int {E.val := int.val}

™

E MU@ {$%.val = $1.val * $3.val}
EPLUSE {$$.val = $1.val + $3.val}
E: INT {$%.val = $1.val}

l-n

5/26

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Another Example of Syntax-Directed Translation

Decl — @Qad is§

Type — ... = |- it \H“C&Qt
e L
Valist — id, VarList Tyre_ T

VarList — sLCi

Decl — Type VarList {VarlList.type := Type.t;ge}
’z—T/) e e——
Type — oLt {Type type ;= /T\> TYPE_1NT;
VarList — id, VarList, {VarLlst1 type := VarList.type;

— id.type := VarList.type}

@ — @ {id.type := VarList.type}

6/26

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Attributes

e (Synthesized Attribute: Value of the attribute computed from the values of attributes
of grammar symbols on RHS.
e Example: val in Expression grammar

@ [nherited Attribute: Value of attribute computed from values of attributes of the LHS

grammar symbol.

o Example: type of VarlList in declaration grammar

7/26

R

R

R

R

R

R

Syntax-Directed Definition

Actions associated with each production in a grammar.

For a productio —>

==K

e A.attr := f(X.attr', Y.attr") for synthesized attributes

—

e Y.attr ;== f(A.attr’, X.attr") for inherited attributes
—_— = - @000

actions may be of the form:

8/26

R

R

R

R

R

R

R

E — E*E
E — E+E
E —> int

E — LT {E.val := E,.val x Ey.val}
—_— _ =
E — E+E {E.val := E,.val + E,.val}

E — int {E.val := int.val}
"_/—A —

9/26

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Another Example of Syntax-Directed Translation

Decl
Type
Type
VarlList
VarList

Ler Ll

Type VarList
integer
float

id , VarList
id

Decl — Type VarlList
\4~i:::::::::::::::ffgggg:jf§§§%?;gzij

Type —

integer

Type — float

VarList —>

id

{VarList.type := Type.type}
{Typetype := int}
{Type.type := float}
{VarList,.type := VarList.type;
id.type := VarList.type}
{id.type := VarList.type}

11/26

R

R

R

R

R

R

R

R

R

R

R

R

R

R

integer int id , int>
id i

integer x ’ y

12/26

R

R

R

R

R

R

R

R

R

R

e S-Attributed Definitions: Where all attributes are synthesized.

o L-Attributed Definitions: Where all inherited attributes are such that their values

depend only on
— inherited attributes of the parent, and

nnerte
- attributes of left siblings

13/26

R

R

R

R

R

R

R

R

R

Attributes and Top-down Parsing

A/f_/;?fg C D

e @th Dl

o B (O\?/
@ Inherited: analogous to functic 7 I;r.p% '
nherited: analogous to function arguments @ —C 5)/

— o= P :
5 C
*\5&’; /\PO_YSQ,,_D(/D/

L-attributed definitions mean that argument to a parsing function is A -
FY/éf/,4,b\:{/V\J L, y

e Synthesized: analogous to return values

e argument of the calling function, or

@ return value/argument of a previously called fungtion } R (5t =) {

14/26

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Synthesized Attributes and Bottom-up Parsing

Keep track of attributes of symbols while parsing.

o Keep a stack of attributes corresponding to stack of symbols.

o Compute attributes of LHS symbol while performing reduction (i.e., while pushing

the symbol on symbol stack)

15/26

Synthesized Attributes and Bottom-Up Parsing

Pmrsiﬂdfp/% STACK INPUT STREAM | ATTRIBUTES <— j/ez/k
5 3*2+58$|$ Seek
$ int *2+5%$|$3
$E *2+5%$(%$3
E — E+E $E” 2 +5%$($3L
E— FE sl ¢ 55| SHLE)
E — int $ E + 5% %6
$E+ 5%$ %6 L
$E+int $1%$6L5
$E+E 1%6 L5
$E $ %11

16/26

R

R

R

R

R

R

R

R

R

R

R

Inherited Attributes and Bottom-up Parsing

@ Inherited attributes depend on the context in which a symbol is used.

@ For inherited attributes, we cannot assign a value to a node’s attributes unless the

parent’s attributes are known. oA — B

@ When building parse trees bottom-up, parent of a node is not known when the node

~a

is created!

o 2f \\(A
c N
N—
@ Solution: i —
o Ensure that all attributes are inherited only from left siblings.

o Use “global” variables to capture inherited values,

o and introduce “marker” nonterminals to manipulate the global variables.

17/26

R

R

R

R

R

R

1 Stademe
525;, ‘Sk (N 7 \&%
5.4-@_4,6,”,@«\{3 [Ss — 5'55/| €
- g ’H-'__‘ \S; —p {f><:5L/;%zéﬁ£D
S — B | other
B — {5s) ST
o & A
B — M, Ss M, B i

— ==
—> @ {current_block++; }
M,

{current_block-; } — —

Ss. 3’723"}1“ AQ%ZC
i@ = & mﬂU Aep
18/26

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Attribute Grammars

e syntax-directed definitions without side-effects

e attribute definitions can be thought of as logical assertions rather than as things
that need to be computed
o distinction between synthesized and inherited attributes disappears
E — E'E {E.type = E,.type = E,.type} v@/m%w/wyh/;j h
_ _ 'EAC/Y\ 5%%&
E — E+b {E.type = E,.type = E,.type} bok wed ™
E — int {E.type = integer} A/ﬁyermgﬂﬁwz&

Aty vl s,

19/26

R

R

R

R

R

R

R

R

R

Attribute Grammars

&
An attribute grammar AG is given by (G, V, F), where:

e G is a context-free grammar f ﬁ

@ Vs the set of attributes, each of which is associated with a terminal or a

nonterminal

o F is the set of attribute assertions, each of which is associated with a production in

the grammar
A string s € L(AQ) iffjs € L(G) and the attribute assertions hold for production used to
derive s,mrs rs w.r.t. G where assertions associated with each edge in

the parse tree are satisfied.

20/26

R

R

R

R

R

R

R

R

R

R

R

Semantic Analysis Phases of Compilation

o

O

Build an Abstract Syntax Tree (AST) while parsing
Abstract Syntax Tree (AST) wh
Decorate the AST with type information (type checking/inference)
/
Generate intermediate code from AST
Optimize intermediate code

Generate final code

21/26

R

R

Abstract Syntax Tree (AST)

@ Represents syntactic structure of a program
p y prog o SA ST %
@ Abstracts out irrelevant grammar details

An AST for the statement:
“if (m == 0) S1 else S2”
is

?QT S<e Treq ~

If-then-else

m/= =\0 A

AST for S1 AST for S2

Abstracted,

22/26

R

R

R

R

Construction of Abstract Syntax Trees

Typically done simultaneously with parsing

. as another instance of syntax-directed translation
... for translating concrete syntax (the parse tree) to abstract syntax (AST).

. with AST as a synthesized attribute of each grammar symbol.

23/26

Parse Tree AST

Binary_Exp

24/26

R

R

R

R

R

R

R

R

R

R

L

E] +T
{E.ast =new BinaryExpr (OP_PLUS,
E,.ast,T.ast); }

T {E.ast=T.ast;}

(E) {F.ast=E.ast;}
int
{F.ast =new IntvValNode(int.val); }

25/26

if ES;elseS,

{S.ast =new IfStmtNode(E.ast,
S;.ast, S,.ast); }

return E
{S.ast =new ReturnNode(E.ast)}

26/26

bl —p Sjmeple ST BR_semz
) — -

L Cm@?} p—l aw—m% B;D% SR

7bt%L8@AQ€‘&%a%&%/ﬁwkﬁ&%@
Cﬁfﬂ%ﬁwﬁgq S/qﬁm{\ — - o - _/

@?J(SQWA — /%Qm/)%j%/ JKCDK,_§€W}:

“L‘m(t QZEJ - /17/ a/ S/ %/ 55362

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

