Optimization Techniques

- The most complex component of modern compilers
- Must always be sound, i.e., semantics-preserving
 - Need to pay attention to exception cases as well
 - Use a conservative approach: risk missing out optimization rather than changing semantics
- Reduce runtime resource requirements (most of the time)
 - Usually, runtime, but there are memory optimizations as well
 - Runtime optimizations focus on frequently executed code
 - How to determine what parts are frequently executed?
 - Assume: loops are executed frequently
 - Alternative: profile-based optimizations
 - Some optimizations involve trade-offs, e.g., more memory for faster execution
- Cost-effective, i.e., benefits of optimization must be worth the effort of its implementation
Code Optimizations

• High-level optimizations
 • Operate at a level close to that of source-code
 • Often language-dependent

• Intermediate code optimizations
 • Most optimizations fall here
 • Typically, language-independent

• Low-level optimizations
 • Usually specific to each architecture
High-level optimizations

- **Inlining**
 - Replace function call with the function body

- **Partial evaluation**
 - Statically evaluate those components of a program that can be evaluated

- **Tail recursion elimination**

- **Loop reordering**

- **Array alignment, padding, layout**
Intermediate code optimizations

- Common subexpression elimination
- Constant propagation
- Jump-threading
- Loop-invariant code motion
- Dead-code elimination
- Strength reduction
Constant Propagation

- Identify expressions that can be evaluated at compile time, and replace them with their values.

- $x = 5;$ \Rightarrow $x = 5;$ \Rightarrow $x = 5;$
- $y = 2;$ \Rightarrow $y = 2;$ \Rightarrow $y = 2;$
- $v = u + y;$ \Rightarrow $v = u + y;$ \Rightarrow $v = u + 2;$
- $z = x \times y;$ \Rightarrow $z = x \times y;$ \Rightarrow $z = 10;$
- $w = v + z + 2;$ \Rightarrow $w = v + z + 2;$ \Rightarrow $w = v + 12;$
- \ldots \Rightarrow \ldots \Rightarrow \ldots
Strength Reduction

• Replace expensive operations with equivalent cheaper (more efficient) ones.

\[
y = 2; \quad \Rightarrow \quad y = 2;
\]
\[
z = x^y; \quad \Rightarrow \quad z = x \times x;
\]
\[
\ldots \quad \ldots
\]

• The underlying architecture may determine which operations are cheaper and which ones are more expensive.
Loop-Invariant Code Motion

• Move code whose effect is independent of the loop's iteration outside the loop.

```plaintext
for (i=0; i<N; i++) {
    for (j=0; j<N; i++) {
        ... a[i][j] ...
    }
}
```

```plaintext
for (i=0; i<N; i++) {
    base = a + (i * dim1);
    for (j=0; j<N; i++) {
        ... (base + j) ...
    }
}
```
Low-level Optimizations

- Register allocation
- Instruction Scheduling for pipelined machines.
- loop unrolling
- instruction reordering
- delay slot filling
- Utilizing features of specialized components, e.g., floating-point units.
- Branch Prediction
Peephole Optimization

• Optimizations that examine small code sections at a time, and transform them
• Peephole: a small, moving window in the target program
• Much simpler to implement than global optimizations
• Typically applied at machine code, and sometimes at intermediate code level as well
• Any optimization can be a peephole optimization, provided it operates on the code within the peephole.
 • redundant instruction elimination
 • flow-of control optimizations
 • algebraic simplifications
Profile-based Optimization

• A compiler has difficulty in predicting:
 • likely outcome of branches
 • functions and/or loops that are most frequently executed
 • sizes of arrays
 • or more generally, any thing that depends on dynamic program behavior.

• Runtime profiles can provide this missing information, making it easier for compilers to decide when certain
Example Program: Quicksort

```
void quicksort(m,n)
int m,n;
{
    int i,j;
    int v,x;
    if ( n <= m ) return;
    /* fragment begins here */
    i = m-1; j = n; v = a[n];
    while(1) {
        do i = i+1; while ( a[i] < v );
        do j = j-1; while ( a[j] > v );
        if (i >= j) break;
        x = a[i]; a[i] = a[j]; a[j] = x;
    }
    x = a[i]; a[i] = a[n]; a[n] = x;
    /* fragment ends here */
    quicksort(m,j); quicksort(i+1,n);
}
```

- Most optimizations opportunities arise in intermediate code
 - Several aspects of execution (e.g., address calculation for array access) aren’t exposed in source code
- Explicit representations provide most opportunities for optimization
- It is best for programmers to focus on writing readable code, leaving simple optimizations to a compiler
3-address code for Quicksort

(1) \(i := m-1 \)
(2) \(j := n \)
(3) \(t_1 := 4*n \)
(4) \(v := a[t_1] \)
(5) \(i := i + 1 \)
(6) \(t_2 := 4*i \)
(7) \(t_3 := a[t_2] \)
(8) if \(t_3 < v \) goto (5)
(9) \(j := j - 1 \)
(10) \(t_4 := 4*j \)
(11) \(t_5 := a[t_4] \)
(12) if \(t_5 > v \) goto (9)
(13) if \(i >= j \) goto (23)
(14) \(t_6 := 4*i \)
(15) \(x := a[t_6] \)
(16) \(t_7 := 4*i \)
(17) \(t_8 := 4*j \)
(18) \(t_9 := a[t_8] \)
(19) \(a[t_7] := t_9 \)
(20) \(t_{10} := 4*j \)
(21) \(a[t_{10}] := x \)
(22) \(\text{goto (5)} \)
(23) \(t_{11} := 4*i \)
(24) \(x := a[t_{11}] \)
(25) \(t_{12} := 4*i \)
(26) \(t_{13} := 4*n \)
(27) \(t_{14} := a[t_{13}] \)
(28) \(a[t_{12}] := t_{14} \)
(29) \(t_{15} := 4*n \)
(30) \(a[t_{15}] := x \)
Organization of Optimizer

- Code optimizer
- Control-flow analysis
- Data-flow analysis
- Transformations
- Code generator
- Front end
Flow Graph for Quicksort

- B1,…,B6 are basic blocks
 - sequence of statements where control enters at beginning, with no branches in the middle

- Possible optimizations
 - Common subexpression elimination (CSE)
 - Copy propagation
 - Generalization of constant folding to handle assignments of the form x = y
 - Dead code elimination
 - Loop optimizations
 - Code motion
 - Strength reduction
 - Induction variable elimination
Common Subexpression Elimination

- Expression previously computed
- Values of all variables in expression have not changed.
- Based on available expressions analysis
Copy Propagation

- Consider:
 \[x = y; \]
 \[z = x \times u; \]
 \[w = y \times u; \]
 Clearly, we can replace assignment on \(w \) by \(w = z \).

- This requires recognition of cases where multiple variables have same value (i.e., they are copies of each other).

- One optimization may expose opportunities for another:
 - Even the simplest optimizations can pay off.
 - Need to iterate optimizations a few times.
Dead Code Elimination

- **Dead variable**: a variable whose value is no longer used.
- **Live variable**: opposite of dead variable.
- **Dead code**: a statement that assigns to a dead variable.
- **Copy propagation** turns copy statement into dead code.

```plaintext
i := m-1
j := n
t_1 := 4*n
v := a[t_1]

i := i+1
t_2 := 4*i
t_3 := a[t_2]
if t_3 < v goto B_2

j := j-1
t_4 := 4*j
t_5 := a[t_4]
if t_5 > v goto B_3

if i >= j goto B_6

x := t_3
a[t_2] := t_5
a[t_4] := x
goto B_2

x := t_3
t_14 := a[t_1]
a[t_2] := t_14
a[t_1] := x
goto B_2
```

17
Induction Vars, Strength Reduction and IV Elimination

- Induction Var: a variable whose value changes in lock-step with a loop index
- If expensive operations are used for computing IV values, they can be replaced by less expensive operations
- When there are multiple IVs, some can be eliminated
Strength Reduction on IVs

(a) Before

\[
\begin{align*}
i &:= m-1 \\
j &:= n \\
t_1 &:= 4*n \\
v &:= a[t_1]
\end{align*}
\]

\[
\begin{align*}
j &:= j-1 \\
t_4 &:= 4*j \\
t_5 &:= a[t_4] \\
\text{if } t_5 > v \text{ goto } B_3
\end{align*}
\]

\[
\begin{align*}
\text{if } i\geq j \text{ goto } B_6
\end{align*}
\]

(b) After

\[
\begin{align*}
i &:= m-1 \\
j &:= n \\
t_1 &:= 4*n \\
v &:= a[t_1]
\end{align*}
\]

\[
\begin{align*}
t_4 &:= 4*j \\
t_5 &:= a[t_4] \\
t_4 &:= t_4 - 4 \\
t_5 &:= a[t_4] \\
\text{if } t_5 > v \text{ goto } B_3
\end{align*}
\]

\[
\begin{align*}
\text{if } i\geq j \text{ goto } B_6
\end{align*}
\]
After IV Elimination ...

\[
\begin{align*}
 i & := m-1 \\
 j & := n \\
 t_1 & := 4n \\
 v & := a[t_1] \\
 t_2 & := 4i \\
 t_4 & := 4j
\end{align*}
\]

\[
\begin{align*}
 t_2 & := t_2 + 4 \\
 t_3 & := a[t_2] \\
 \text{if } t_3 & < v \text{ goto } B_2 \\
 t_4 & := t_4 - 4 \\
 t_5 & := a[t_4] \\
 \text{if } t_5 & > v \text{ goto } B_3 \\
 \text{if } t_2 & \geq t_4 \text{ goto } B_6 \\
 a[t_2] & := t_5 \\
 a[t_4] & := t_3 \\
 \text{goto } B_2 \\
 t_{14} & := a[t_1] \\
 a[t_2] & := t_{14} \\
 a[t_1] & := t_3 \\
\end{align*}
\]
Program Analysis

- Optimization is usually expressed as a program transformation
 \[C_1 \iff C_2 \] when property \(P \) holds

- Whether property \(P \) holds is determined by a program analysis

- Most program properties are undecidable in general

 - Solution: Relax the problem so that the answer is an “yes” or “don’t know”
Applications of Program Analysis

• Compiler optimization
• Debugging/Bug-finding
 • “Enhanced” type checking
 • Use before assign
 • Null pointer dereference
 • Returning pointer to stack-allocated data
• Vulnerability analysis/mitigation
 • Information flow analysis
 • Detect propagation of sensitive data, e.g., passwords
 • Detect use of untrustworthy data in security-critical context
 • Find potential buffer overflows
• Testing – automatic generation of test cases
• Verification: Show that program satisfies a specified property, e.g., no deadlocks
 • model-checking
Dataflow Analysis

• Answers questions relating to how data flows through a program
 • What can be asserted about the value of a variable (or more generally, an expression) at a program point

• Examples
 • Reaching definitions: which assignments reach a program statement
 • Available expressions
 • Live variables
 • Dead code
 • ...
Dataflow Analysis

• Equations typically of the form
 \[\text{out}[S] = \text{gen}[S] \cup (\text{in}[S] - \text{kill}[S]) \]
 where the definitions of \text{out}, \text{gen}, \text{in} and \text{kill}
differ for different analysis

• When statements have multiple predecessors, the equations have to be
 modified accordingly

• Procedure calls, pointers and arrays require careful treatment
Points and Paths

\begin{align*}
\text{\textbf{d}_1: } & \text{i := m-1} \\
\text{\textbf{d}_2: } & \text{j := n} \\
\text{\textbf{d}_3: } & \text{a := u1} \\
\text{\textbf{d}_4: } & \text{i := i+1} \\
\text{\textbf{d}_5: } & \text{j := j-1} \\
\text{\textbf{d}_6: } & \text{a := u2}
\end{align*}
Reaching Definitions

• A definition of a variable x is a statement that assigns to x
 • *Ambiguous definition*: In the presence of aliasing, a statement may define a variable, but it may be impossible to determine this for sure.

• A definition d reaches a point p provided:
 • There is a path from d to p, and this definition is not “killed” along p
 • “Kill” means an unambiguous redefinition

• Ambiguity \Rightarrow approximation
 • Need to ensure that approximation is in the right direction, so that the analysis will be *sound*
DFA of Structured Programs

- $S \rightarrow \text{id := } E$
 - $| S;S$
 - $| \text{if } E \text{ then } S \text{ else } S$
 - $| \text{do } S \text{ while } E$

- $E \rightarrow E + E$
 - $| \text{id}$
DF Equations for Reaching Defns

\[\text{gen}[S] = \{d\} \]
\[\text{kill}[S] = D_a - \{d\} \]
\[\text{out}[S] = \text{gen}[S] \cup (\text{in}[S] - \text{kill}[S]) \]

\[\text{gen}[S] = \text{gen}[S_2] \cup (\text{gen}[S_1] - \text{kill}[S_2]) \]
\[\text{kill}[S] = \text{kill}[S_2] \cup (\text{kill}[S_1] - \text{gen}[S_2]) \]
\[\text{in}[S_1] = \text{in}[S] \]
\[\text{in}[S_2] = \text{out}[S_1] \]
\[\text{out}[S] = \text{out}[S_2] \]
DF Equations for Reaching Defns

- \(\text{gen}[S] = \text{gen}[S_1] \cup \text{gen}[S_2] \)
- \(\text{kill}[S] = \text{kill}[S_1] \cap \text{kill}[S_2] \)
- \(\text{in}[S_1] = \text{in}[S] \)
- \(\text{in}[S_2] = \text{in}[S] \)
- \(\text{out}[S] = \text{out}[S_1] \cup \text{out}[S_2] \)

(c) \[\]

- \(\text{gen}[S] = \text{gen}[S_1] \)
- \(\text{kill}[S] = \text{kill}[S_1] \)
- \(\text{in}[S_1] = \text{in}[S] \cup \text{gen}[S_1] \)
- \(\text{out}[S] = \text{out}[S_1] \)

(d) \[\]
Direction of Approximation

- Actual *kill* is a superset of the set computed by the dataflow equations
- Actual *gen* is a subset of the set computed by these equations
- Are other choices possible?
 - Subset approximation of *kill*, superset approximation of *gen*
 - Subset approximation of both
 - Superset approximation of both
- Which approximation is suitable depends on the intended use of analysis results
Solving Dataflow Equations

• Dataflow equations are recursive
• Need to compute so-called fixpoints, to solve these equations
• Fixpoint computations uses an interactive procedure
 • \(out^0 = \phi \)
 • \(out^i \) is computed using the equations by substituting \(out^{i-1} \) for occurrences of \(out \) on the rhs
 • Fixpoint is a solution, i.e., \(out^i = out^{i-1} \)
Computing Fixpoints: Equation for Loop

- Rewrite equations using more compact notation, with:
 - \(J \) standing for in\([S]\) and
 - \(I, G, K, \) and \(O \) for in\([S1]\), gen\([S1]\), kill\([S1]\) and out\([S1]\):
 \[
 I = J \cup O, \\
 O = G \cup (I - K)
 \]

- Letting \(I^0 = O^0 = \emptyset \), we have:
 \[
 I^1 = J \\
 I^2 = J \cup O^1 = J \cup G \\
 I^3 = J \cup O^2 = J \cup G \cup (J - K) = I^2 \\
 O^1 = G \cup (I^0 - K) = G \\
 O^2 = G \cup (I^1 - K) = G \cup (J - K) \\
 O^3 = G \cup (I^2 - K) = O^2
 \]

(Note that for all sets \(A \) and \(B \), \(A \cup (A - B) = A \), and
for all sets \(A, B \) and \(C \), \(A \cup (A \cup C - B) = A \cup (C - B) \).)

Thus, we have a fixpoint.

\[
I = J \cup G \\
I = G, \cup G_2 \cup G_3 - K_4
\]
Use-Definition Chains

• Convenient way to represent reaching definition information

• ud-chain for a variable links each use of the variable to its reaching definitions
 • One list for each use of a variable

\[
\begin{align*}
 x &= y + z \\
 x &= y - z
\end{align*}
\]
Available Expressions

• An expression \(e \) is available at point \(p \) if
 • every path to \(p \) evaluates \(e \)
 • none of the variables in \(e \) are assigned after last computation of \(e \)

• A block *kills* \(e \) if it assigns to some variable in \(e \) and does not recompute \(e \).

• A block *generates* \(e \) if it computes \(e \) and doesn’t subsequently assign to variables in \(e \).

• *Exercise:* Set up data-flow equations for available expressions. Give an example use for which your equations are sound, and another example for which they aren’t.
Available expressions -- Example

\[a := b + c \]

\[b := a - d \]

\[c := b + c \]

\[d := a - d \]
Live Variable Analysis

• A variable \(x \) is *live* at a program point \(p \) if the value of \(x \) is used in some path from \(p \).
• Otherwise, \(x \) is *dead*.
• Storage allocated for dead variables can be freed or reused for other purposes.
• \(\text{in}[B] = \text{use}[B] \cup (\text{out}[B] - \text{def}[B]) \)
• \(\text{out}[B] = \bigcup \text{in}[S] \), for \(S \) a successor of \(B \).
• Equation similar to reaching definitions, but the role of in and out are interchanged.
Def-Use Chains

• du-chain links the definition of a variable with all its uses
 • Use of a definition of a variable x at a point p implies that there is a path from this definition to p in which there are no assignments to x

• du-chains can be computed using a dataflow analysis similar to that for live variables
Optimizations and Related Analyses

- **Common subexpression elimination**
 - Available expressions

- **Copy propagation**
 - In every path that reaches a program point p, the variables x and y have identical values

- **Detection of loop-invariant computation**
 - Any assignment $x := e$ where the definition of every variable in e occurs outside the loop.

- **Code reordering**: A statement $x := e$ can be moved
 - earlier before statements that (a) do not use x, (b) do not assign to variables in e
 - later after statements that (a) do not use x, (b) do not assign to variables in e
Difficulties in Analysis

- Procedure calls
- Aliasing
Difficulties in Analysis

• Procedure calls
 • may modify global variables
 • potentially kill all available expressions involving global variables
 • modify reaching definitions on global variables

•Aliasing
 • Create ambiguous definitions
 • a[i] = a[j] --- here, i and j may have same value, so assignment to a[i] can potentially kill a[j]
 • *p = q + r --- here, p could potentially point to q, r or any other variable
 • creates ambiguous redefinition for all variables in the program!