@ A set of values
A bikhd
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@ A set of values

o Together with a set of operations on these values that possess certain properties

—

—
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Topics

Data types in modern languages

e simple and compound types

Type declaration

Type inference and type checking

e Type equivalence, compatibility, conversion and coercion

Strongly/Weakly/Un-typed languages

Static Vs Dynamic type checking
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@ Predefined

e int, float, double, etc in C

o All other types are constructed, starting from predefined (aka primitive) types
e Enumerated:

@ (enum colors|{red, green, blue} in C )
m{ green, blue} in C A]\ijYQ\C‘ Mot AWQJ

o type colors = Red|Green|Blue in OCAML
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e Types constructed from other types using type constructors
Sylpm e e e

o Cartesian product (*) / —

o Function types (=) , —

o Uniontypes(U)  —

o Arrays ~

~— bre Aefrmed
’62/’?6, wj‘?‘vu@!ﬁ\//s

o Pointers
L

—\p ~Ser— o4e4—i_~me, A
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o Let / represent the integer type and R represent real type.

@ The cross product / x R is defined in the usual manner of product of sets, i.e.,
Ix R={(i,r)|[i € l,r € R}

e Cartesian product operator is non-associative. A RBRC
v e

(AxB)xC  AX(Bxc) 3-tnple
TN (o, b, )
(Ca,5), <) )
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Labeled Product types

@ In Cartesian products, components of tuples don’t have names.

o Instead, they are identified by numbers.
@ In labeled products each component of a tuple is given a name.

@ Labeled products are also called records (a language-neutral term)
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| < F x ptr(c)

@ struct is a term that is specific to C and C++ (3’ = ) [ij

. &~ .
struct t {int a;float b;char *c;}; in C
_——m
/ —_—
Cort 2% ook P’tY CC}‘\KVD
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Function Types

° @@is a function type

o Type of a function that takes one argument of type T; and returns type T,
nt wL )t —P lnt

@ OCAML supports functions Mes. ’f ( Lm b)

o They can be created and manipulated by other functiot s

T x F —= (T
@ In imperative languages such as C, we can pass pointers to functions, but this does not offer
the same level of flexibility.

e E.g., no way for a C-function to dynamically create and return a pointer to a function;
o rather, it can return a pointer to an EXISTING function

@ Recent versions of C++ (as well Python, Ji\ﬁcr_iﬁt and recent Java versions) support
dynamically created functions (aka lambda abstractions)

e See Functional Programming for Imperative Programmers for a discussion of functional

rogramri eatures in
p g 10/38
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Union types

@ Union types correspond to set unions, just like product types corresponded to

Cartesian products.
e -> operator is right-associative, so we read the type as float -> (float -> float).

@ Unions can be tagged or untagged. C/C++ support only untagged unions:
Strt —o Simple 3t 7
( CG“'V\F\'S\AY\% St

e

union v_{
int ival;
=a=
float fivaly}
—_—

char cval;
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Tagged Unions

@ In untagged unions, there is no way to ensure that the component of the right type
is always accessed.

e E.g., an integer value may be stored in the above union, but due to a programming error,
the fval field may be accessed at a later time.

o fval doesn’t contain a valid value now, so you get some garbage.

e With tagged unions, the compiler can perform checks at runtime to ensure that the

right components are accessed.

o Tagged unions are NOT supported in C/C++.
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@ Pascal supports tagged unions using VARIANT RECORDs IN7 s € (
RECORD , FLoAT 516 :“ Q“.b/
CASE b: BOOLEAN OF =z A p— /O
D028 R0 DMUERITE | IN T (1)

FALSE: r: REAL END =C Y

e —_— ' —
END _— l——LOAT(SE)
END
. . . . . . /_\
e Tagged union is also called adiscriminated union :
a?22 brasc

I
OcAmML d\@@%
~ ‘SCGJQ.,

_——

\
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Array types

@Pﬁ Q% presS/sns S

@ Array construction is denoted by
xR YYQj b

-
e array(<range>, <eleme@tType>).
I—
e C-declaration / \
- TR

o A declaration e

o defines a variable a of type array(0-4, int)
ikt A iRl

— e ——— g
o declares a variable b of type array(0-4; array(0-6, union tt))

@ We may not consider range as part of type

14/38
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Pointer types

@ A pointer type will be denoted using the syntax
e ptr(<elementType>)

o where <elementType> denote the types of the object pointed by a pointer type.

@ The C-declaration \ {nt %‘P (int 33(
o char *S; 4\(\/ M fﬁ&ej ‘/ﬂt Pa\’z’an’n/

— N S o~ i N
o defines a variable s of type ptr(char) g . P sante v SR 2 ge v
X Tehm

@ A declaration (%—P) w am (rtege
e int (*f)(int s, float v) 7[ el P—tv e

e defines a (function) pointer of type ptr(int float@mt £ Ak retarad

tnt
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Recursive types

@ Recursive type: a type defined in terms of itself.

e Example in C:

struct IntList {
int hd;
TfntList tl;]
e

}s

@ Does not work:

o This definition corresponds to an infinite list.

e There is no end, because there is no way to capture the case when the tail has the value

43 -I”
ni
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@ Need to express that tail can be nil or be a list.

@ Try: variant records:

TYPE charlist = RECORD
CASE IsEmpty: BOOLEAN OF
TRUE: /* empty list */ |
FALSE:
data: CHAR;
next: charlist;
END
END

o Still problematic: Cannot predict amount of storage needed.

17/38
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Recursive types (Continued)

@ Solution in typical imperative languages:

@ Use pointer types to implement recursive type:

struct IntList {
int hd;
IntList *tl;
rp—ee,
}s
@ Now, tl can be:

e a NULL pointer (i.e., nil or empty list)

e or point to a nonempty list value

@ Now, IntList structure occupies only a fixed amount of storage

18/38
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Recursive types In OCAML

@ Direct definition of recursive types is supported in OCAML using type declarations.

. . . t |
@ Use pointer types to implement recursive type: —> (NTCEAT Y Ze
# type intBtree = —2 F(IATLEAS ﬁ%ﬂm&—)
LEAF of int

—2 BNINADE v
vt R Tren J
— TER v DE Q

| NODE of int * intBtree * intBtree;;
—

type intBtree = LEAF of int | NODE of int * intBtree *
—_—

@ We are defining a binary tree type inductively:

intBtree =

o Base case: a binary tree with one node, called a LEAF Lot ac 1t m 3ept R Fran
. . . D R Tvee a0 Bver
e Induction case: construct a binary tree by constructing a new node that-soresaninteger—

value, and has two other binary trees as children
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Polymorphism

@ Ability of a function to take arguments of multiple types.

@ The primary use of polymorphism is code reuse.

@ Functions that call polymorphic functions can use the same piece of code to operate

———
on different types of data.
—_—mnm
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Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Com

Overloading (adhoc polymorphism)

@ Same function NAME used to represent different functions + N
o implementations may be different
e arguments may have different types o-F ()
—y—\
e Example:

e operator '+’ is overloaded in most languages so that they can be used to add integers or
floats.
e But implementation of integer addition differs from float addition.
e Arguments for integer addition or ints, for float addition, they are floats.
@ Any function name can be overloaded in C++, but not in C.
o All virtual functions are in fact overloaded functions.

— -
21/38
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Polymorphism & Overloading

B £
. . S
e Parametric polymorphism: S—f S, o

e same function works for arguments of different types

a-—>-ﬁ

e same code is reused for arguments of different types.
o allows reuse of “client” code (i.e., code that calls a-pelymorphicfunctiom)-as-wet
. e ol = )\/\
e Overloading;: P - DA Fdjmm’} e« A
e due to differences in implementation of overloaded functions, there is no code reuse in

their implementation e '\mP\'em%"\—Qﬁ’Lm A

o but client code is reused h Shareh
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Parametric polymorphism in C++

T T3S
e Example: ", [9/}92 _Z;ﬁ‘_j—__ < >
template <class e zg/// . ) i N
C min(const C* a, int size, C minval)fgl \71“65 ementaf e (S
for (int i = 0; i < size; i++) YQLASQQ:JQ ’yLN ) C[.C‘SSQ\S C

if (a[l inval)
mlnval al1 (W e S)

return mlnval

@ Note: same code used for arrays of any type.
o The only requirement is that the type support the “<’

5

>and “=” operations

@ The above function is parameterized wrt class C

e Hence the term “parametric polymorphism”.

@ Unlike C++, C does not support templates.
23/38
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Code reuse with Parametric Polymorphism

e With parametric polymorphism, same function body reused with different types.

@ Basic property:
e does not need to "look below" a certain level
e E.g., min function above did not need to look inside each array element.

e Similarly, one can think of length and append functions that operate on linked lists of all

types, without looking at element type.
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Code reuse with overloading

@ No reuse of the overloaded function

o there is a different function body corresponding to each argument type.
@ But client code that calls a overloaded function can be reused.

e Example
o Let C be a class, with subclasses C1,...,.Cn.

o Let f be a virtual method of class C

e We can now write client code that can apply the function f uniformly to elements of an

array, each of which is a pointer to an object of type C1,...,.Cn.

25/38
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//\

e Example: C, Co - A
void g(int size, IC a[]ég @ @
for (int i = 0; i < size; i++)
al[i]- >f(

@ Now, the body of function g (which is a client of the function f) can be reused for

arrays that contain objects of type C; or C, or ... or C,,0r even a mixture of these
types. Stent

\
|+ SPen & NAA)Q %\

P

é—a——— 26/38
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Type Equivalence

@ Structural equivalence: two types are equivalent if they are defined by identical

type expressions.

e array ranges usually not considered as part of the type

e record labels are considered part of the type.

e Name equivalence: two types are equal if they have the same name.

o Declaration equivalence: two types are equivalent if their declarations lead back to
i e

the same original type expression by a series of redeclarations.
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Type Equivalence (contd.)

@ Structural equivalence is the least restrictive
e

e Name equivalence is the most restrictive.

° wgv’algnce is in between
o TYPE t1 = ARRAY [1..10] of INTEGER; VAR v1: ARRAY [1..10] OF INTEGER;

m’?‘h’

o TYPE t2 = t1; VAR v3,v4

yaR vs 1L

; VAR v2: ARRAY [1..10] OF INTEGER;

Structurally equivalent? | Declaration equivalent? | Name equivalent?
t1,t2 ((Ygs_ \\ Yes No
| viv2 |Yes | No No
— | v3,v4 \Yes / Yes \Yes
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Declaration equivalence

@ In Pascal, Modula use decl equivalence

e InC
~ . .
o Decl equiv used for structs and unions =—

e Structual equivalence for other types.
Srructtal cquivalente Tor Other types

struct { int a ; float b ;} x ; X - 2 @ A —
struct { int a; float b; }y; \j /

@ x and y are structure equivalent but not declaration equivalent. S =
typedef int* intp ; stvuct —\S— Tj ;
typedef int** intpp ; Cnt o
intpp v1 ; =4 :j/
intp *v2 ; /@(QOJC -’9/

@ v1and v2 are structure equivalent. } y SEvock =
SErac
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Type Compatibility

. . (nt B
@ Weaker notion than type equivalence
Lloat &y
e Notion of compatibility differs across operators L
— = J
e Example: assignment operator: ; -
‘ ~

o v =expr is OK if <expr> is type-compatible with v.

o If the type of expr is a Subtype of the type of v, then there is compatibility.

@ Other examples:

o In most languages, assigning integer value to a float variable is permitted, since integer is

a subtype of float.

e In OO-languages such as Java, an object of a derived type can be assigned to an object of

the base type.

—
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Type Compatibility (Continued)

@ Procedure parameter passing uses the same notion of compatibility as assignment

o Note: procedure call is a 2-step process
e assignment of actual parameter expressions to the formal parameters of the procedure

o execution of the procedure body
e Formal parameters are the parameter names that appear in the function declaration.

@ Actual parameters are the expressions that appear at the point of function call.
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@ Static (compile time)

o Benefits
@ norun-time overhead <
e programs safer/more robust <

e Dynamic (run-time)
o Disadvantages
@ runtime overhead for maintaining type info at runtime

o performing type checks at runtime

o Benefits ’3
o more flexible/more expressive
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Examples of Static and Dynamic Type Checking

e T 7 z
@ C++ allows
Upcasts: casting of subclass to superclass (always type-safe)
Downcasts: superclass to subclass (not necessarily type-safe) — but no way to check

since C++ is statically typed.

o Actually, runtime checking of downcasts is supported in C++ but is typically not used

due to runtime overhead

@ Java uses combination of static and dynamic type-checking to catch unsafe casts

(and array accesses) at runtime.

b eck
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Type Checking (Continued)

@ Type checking relies on type compatibility andmes.

e Type inference rules are used to infer types of expressions. e.g., type of (a+b)+c is

inferred from type of a, b and c and the inference rule for operator ‘+°.
e Type inference rules typically operate on a bottom-up fashion.

e Example: (a+b)+c
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Type Checking (Continued)

e In OCAML, type inference rules capture bottom-up and top-down flow of type info.

e Example of Top-down: let f x Leie 3 float™i @ \ Lloot » cnC

b xtoml A st
@ let f 2yz =

z{—\kj-/-z,

@ Here types of x and y inferred from return type of f.

@ Note: Most of the time OCAML programs don’t require type declaration.

e But it really helps to include them: programs are more readable, and most important, you

get far fewer hard-to-interpret type error messages.

35/38


R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R


Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Con

Strong Vs Weak Typing

e Strongly typed language: such languages will execute without producing uncaught

type errors at runtime. ’p N
ypE 0> &F AT, _
e no invalid memory access

@ no seg fault

e array index out of range
o access of null pointer M

e No invalid type casts

e Weakly typed: uncaught type errors can lead to undefined behavior at runtime

PRI A
@ In practice, these terms used in a relative sense

@ Strong typing does not imply static typing
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Type Conversion

)
° o . . . . . L = C (SRl J
Explicit: Functions are used to perform conversion £ ==
. . .
e example: strtol, atoi, itoa in C; float and int etc. ’F

y
e Implicit conversion (coercion) -
—

e example: -

o If ais float and b is int then type of a+b is float
o Before doing the addition, b must be converted to a float value. This conversion is done

automatically.

) . chavy® < e= =y
e Casting (asin C) , -
o Y
@ Invisible “conversion:” in un nion ‘
sible “conversio untagged unions o CU\WM,,«):CJ

—_—
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Data Types Summary

e Simple/built-in types
e Compound types (and their type expressions)

e Product, union, recursive, array, pointer

e Parametric Vs subtype polymorphism, Code reuse
 SUDTYPE poTymorphnism

@ Polymorphism in OCAML, C++,

@ Type equivalence

o Name, structure and declaration equivalence
e Type compatibility
e Type inference, type-checking, type-coercion

e Strong Vs Weak, Static Vs Dynamic typing
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