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Why Binaries?

Unavailability of source code

Ease of deployment

Completeness: Low-level libraries and hand-wri�en assembly

Soundness: Compiler optimizations can eliminate security-critical code
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Challenges of Working With Binaries

Size and complexity of instruction sets such as x86 and ARM.

Techniques o�en limited to a single processor

Only a subset of instructions supported

High performance overheads

Dynamic instrumentation (e.g., Pin) is robust, but slow.

Static instrumentation can be fast, but faces challenges on large/complex binaries.
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Overcoming Challenges: Instruction Set Complexity

Modern instruction sets are complex

Intel’s manual is 1500+ pages and 1100+ instructions

ARM’s manual is over 1000 pages (and growing!)

Frequent additions of ISA extensions

Solution: Translate (“li�”) assembly to a higher level, architecture-independent
intermediate representation (IR)

But: manual modeling is tedious, error-prone, and impossible to keep up with

Most existing tools support only the top one or two architectures.

What about non-main-stream processors, e.g., in IoT environments?
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Overcoming Challenges: Instruction Set Complexity

Modern compilers (e.g., GCC) can generate code for numerous architectures

1. Source −→ IR: Translate source code to architecture-neutral intermediate representation

2. IR −→ Asm: Translate IR to assembly using architecture-specific machine descriptions

IR contains detailed semantics that has been is extensively tested

�estion: Can we reverse the IR to assembly translation process?

Li�s assembly to a common IR that is simpler to analyze
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LISC: Learning Instr. Semantics from Compilers

Black-box approach: does not depend on gcc internals

Learns Asm→ RTL (gcc’s IR) mapping from examples

Almost an endless supply of examples available!

LISC learns a decision tree with variables

Not a standard classification problem: we are learning a function

Must ensure sound translation in all cases
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LISC Approach

1. Collect training data

Compile many packages to collect 〈rtl, asm〉
pairs

2. Parameterize: for each pair 〈rtl, asm〉
Parse rtl and asm into trees

identify the parameters (leaves)

compute the mapping between them

3. Build transducer from parameterized pairs

transducer is an automaton similar to

Moore/Mealy machine

input is asm tree, output is rtl tree
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Transducer Construction Example

add $5, %eax

add %ebx, %eax

sub $2, %eax

(set (reg eax) (plus (reg eax) (const 5)))

(set (reg eax) (plus (reg eax) (reg ebx)))

(set (reg eax) (plus (reg eax) (const -2)))

(set (reg X) (plus (reg X) (_))

(const -1*Y)

subadd

X = %eax, Y = $2X = %eax

(reg Y)
Y = ebx

(const Y)
Y = 5

$ %
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LISC: Evaluation

Completeness:
99.5% of x86 and 99.8% of ARM instructions achieved

a�er training with about 10 chosen binaries

Remaining are mostly NOPs and other obsolete instructions (e.g., BCD arithmetic)

Soundness:
Proved under reasonable assumptions

context-independent translation of RTLs into assembly

Also experimentally verified on core instructions

Now LISC v2 supports x86_64

Work done originally on x86_32

Download from http://seclab.cs.sunysb.edu/seclab/liscV2/
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Static Binary Instrumentation: Challenges

Robust static disassembly

Including low-level libraries and hand-wri�en assembly

Static instrumentation without breaking complex code

Fixing up indirect control transfers

Fixing up direct transfers

Tolerating disassembly errors

Secure instrumentation

Ensure instrumentation of all code

Ensure that added security checks cannot be bypassed
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Static Disassembly: BinCFI approach

Take advantage of the fact that the presence of data in code is rare

Use linear disassembly, followed by error detection and correction

Error detection is based on control flow consistency

Tolerate disassembly errors:

Ensure that if data is disassembled as code, that does not cause misbehavior of

instrumented code
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Pointer Fixup

Direct control transfers: Instrument assembly code

“Reassemblable disassembly:” Disassembled code can be reassembled into binary with

full preservation of behavior

Use labels so that the assembler can figure out actual instruction o�sets etc.

Indirect control transfers:
Static analysis to discover all possible code pointers

Conservative approach: may include non-code pointers, but cannot leave out legitimate ones
Address translation to translate at runtime

Provides most transparency benefits of dynamic translation techniques
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Safe and Secure Instrumentation

Make a second copy of code and instrument it

It is OK if you disassemble and instrument data, as the original data is le� in place

Control-flow integrity ensures that only disassembled code is instrumented

If some code is somehow missed, it leads to failure rather than security violation

CFI also protects all the added instrumentation

CFI disallows “jumping past instrumentation”
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BinCFI Results

Supports large and low-level COTS (“stripped”) binaries
glibc, Firefox, Adobe Reader, gimp, etc.

Over 300MB of (intel 32-bit) binaries in total.

Eliminates 99% of control-flow targets and 93% of possible gadgets

Remaining gadgets provide very limited capability

Good performance while providing full transparency

About 10% overhead on CPU-intensive C-benchmarks, somewhat higher for C++

programs
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Static Instrumentation: Further Performance Improvements...

Most of BinCFI’s overhead comes from runtime code pointer translation

�estion: Can we avoid this runtime translation?

Requires code pointers to be translated at instrumentation time

Yes: For 64-bit position-independent binaries

Almost all code on modern Linux distributions falls in this category
Pointers are all explicitly identified in these binaries

but there is no information on which of these point to code

Approach: Develop static analysis to distinguish code and data pointers

Relies on detailed instruction semantics
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Influential Work in Binary Instrumentation by Past Students

of CSE 509

Fine-grained binary code randomization [ACSAC ’20, ACSAC ’17]

Accurate detection of function boundaries in binaries [DSN ’17]

Extracting instruction semantics from compiles [FSE ’17, ASPLOS ’16]

Binary instrumentation for ROP Defense [ACSAC ’15]

Code and Control-flow integrity [ACSAC ’15]

Platform for Static Binary Instrumentation [VEE ’14]

Control-flow Integrity for COTS Binaries [USENIC Sec ’13, Best paper award]
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