R. Sekar

October 21, 2021

1/23

2/23

@ Unavailability of source code

e Ease of deployment
e Completeness: Low-level libraries and hand-written assembly

@ Soundness: Compiler optimizations can eliminate security-critical code

3/23

Binary instrumentation Disassembly

Challenges of Working With Binaries

@ Size and complexity of instruction sets such as x86 and ARM.

e Techniques often limited to a single processor

e Only a subset of instructions supported

e High performance overheads
e Dynamic instrumentation (e.g., Pin) is robust, but slow.

e Static instrumentation can be fast, but faces challenges on large/complex binaries.

4/23

Binary instrumentation Disassembly

Overcoming Challenges: Instruction Set Complexity

@ Modern instruction sets are complex
e Intel’s manual is 1500+ pages and 1100+ instructions
o ARM’s manual is over 1000 pages (and growing!)

e Frequent additions of ISA extensions

@ Solution: Translate (“lift”) assembly to a higher level, architecture-independent

intermediate representation (IR)

@ But: manual modeling is tedious, error-prone, and impossible to keep up with
e Most existing tools support only the top one or two architectures.

e What about non-main-stream processors, e.g., in loT environments?

5/23

Binary instrumentation Disassembly

Overcoming Challenges: Instruction Set Complexity

@ Modern compilers (e.g., GCC) can generate code for numerous architectures
1. Source — IR: Translate source code to architecture-neutral intermediate representation

2. IR — Asm: Translate IR to assembly using architecture-specific machine descriptions
@ IR contains detailed semantics that has been is extensively tested

@ Question: Can we reverse the IR to assembly translation process?

o Lifts assembly to a common IR that is simpler to analyze

6/23

Binary instrumentation Disassembly

LISC: Learning Instr. Semantics from Compilers

@ Black-box approach: does not depend on gcc internals

@ Learns Asm — RTL (gcc’s IR) mapping from examples

e Almost an endless supply of examples available!
e LISC learns a decision tree with variables
e Not a standard classification problem: we are learning a function

@ Must ensure sound translation in all cases

7/23

1. Collect training data

o Compile many packages to collect (rtl, asm)

pairs

8/23

1. Collect training data

o Compile many packages to collect (rtl, asm)

pairs
2. Parameterize: for each pair (rtl, asm)
e Parse rtl and asm into trees

o identify the parameters (leaves)
o compute the mapping between them

(sub $34, %rbx
(set (reg rbx) (plus (reg rbx) (const -34))))

9/23

1. Collect training data

o Compile many packages to collect (rtl, asm)

pairs
2. Parameterize: for each pair (rtl, asm)
e Parse rtl and asm into trees

o identify the parameters (leaves)
o compute the mapping between them

(sub $/34, %/tbx.
(set (reg -) (plus (reg -) (const --))))

10/23

Binary instrumentation Disassembly

LISC Approach

1. Collect training data (sub $134), 7JibX
o Compile many packages to collect (rtl, asm) (set (reg I lus (reg I (const D))

pairs

Y X

2. Parameterize: for each pair (rtl, asm)
e Parse rtl and asm into trees
o identify the parameters (leaves)

e compute the mapping between them { map: '_o'i'j'tput = -1 *input

11/23

Binary instrumentation Disassembly

LISC Approach

1. Collect training data
o Compile many packages to collect (rtl, asm)
pairs
2. Parameterize: for each pair (rtl, asm)

o Parse rtl and asm into trees
o identify the parameters (leaves)

e compute the mapping between them

3. Build transducer from parameterized pairs
e transducer is an automaton similar to
Moore/Mealy machine

e input is asm tree, output is rtl tree
12/23

Binary instrumentation Disassembly

Transducer Construction Example

add %ebx, %eax — (set (reg eax) (plus (reg eax) (reg ebx)))
add $5, %eax — (set (reg eax) (plus (reg eax) (const 5)))

sub $2, %eax — (set (reg eax) (plus (reg eax) (const -2)))

(set (reg X) (plus (reg X) (D)

add sub
X = %eax X = %eax, Y = $2
V\% (const -1*Y)
Y=5 Y = ebx

13/23

Binary instrumentation Disassembly

LISC: Evaluation

o Completeness:
o 99.5% of x86 and 99.8% of ARM instructions achieved

e after training with about 10 chosen binaries

e Remaining are mostly NOPs and other obsolete instructions (e.g., BCD arithmetic)

@ Soundness:
e Proved under reasonable assumptions

e context-independent translation of RTLs into assembly

o Also experimentally verified on core instructions

@ Now LISC v2 supports x86_64

e Work done originally on x86_32
e Download from http://seclab.cs.sunysb.edu/seclab/liscv2/

14/23

http://seclab.cs.sunysb.edu/seclab/liscV2/

Binary instrumentation Disassembly

Static Binary Instrumentation: Challenges

@ Robust static disassembly

o Including low-level libraries and hand-written assembly

@ Static instrumentation without breaking complex code
e Fixing up indirect control transfers
o Fixing up direct transfers

o Tolerating disassembly errors

@ Secure instrumentation
e Ensure instrumentation of all code

o Ensure that added security checks cannot be bypassed

15/23

Binary instrumentation Disassembly

Static Disassembly: BinCFl approach

o Take advantage of the fact that the presence of data in code is rare
@ Use linear disassembly, followed by error detection and correction
@ Error detection is based on control flow consistency

@ Tolerate disassembly errors:

e Ensure that if data is disassembled as code, that does not cause misbehavior of

instrumented code

16/23

Binary instrumentation Disassembly

Pointer Fixup

e Direct control transfers: Instrument assembly code
o “Reassemblable disassembly:” Disassembled code can be reassembled into binary with

full preservation of behavior

o Use labels so that the assembler can figure out actual instruction offsets etc.

@ Indirect control transfers:
e Static analysis to discover all possible code pointers
e Conservative approach: may include non-code pointers, but cannot leave out legitimate ones

o Address translation to translate at runtime
e Provides most transparency benefits of dynamic translation techniques

17/23

Binary instrumentation Disassembly

Safe and Secure Instrumentation

@ Make a second copy of code and instrument it

o It is OK if you disassemble and instrument data, as the original data is left in place

e Control-flow integrity ensures that only disassembled code is instrumented

o If some code is somehow missed, it leads to failure rather than security violation

e CFl also protects all the added instrumentation

o CFl disallows “jumping past instrumentation”

18/23

Binary instrumentation Disassembly

BinCFI Results

@ Supports large and low-level COTS (“stripped”) binaries

e glibc, Firefox, Adobe Reader, gimp, etc.
@ Over 300MB of (intel 32-bit) binaries in total.

o Eliminates 99% of control-flow targets and 93% of possible gadgets

e Remaining gadgets provide very limited capability

@ Good performance while providing full transparency
o About 10% overhead on CPU-intensive C-benchmarks, somewhat higher for C++

programs

19/23

Binary instrumentation Disassembly

Static Instrumentation: Further Performance Improvements...

@ Most of BinCFI’s overhead comes from runtime code pointer translation

@ Question: Can we avoid this runtime translation?

e Requires code pointers to be translated at instrumentation time

20/23

Binary instrumentation Disassembly

Static Instrumentation: Further Performance Improvements...

@ Most of BinCFI’s overhead comes from runtime code pointer translation

@ Question: Can we avoid this runtime translation?

e Requires code pointers to be translated at instrumentation time

@ Yes: For 64-bit position-independent binaries

e Almost all code on modern Linux distributions falls in this category
e Pointers are all explicitly identified in these binaries

e but there is no information on which of these point to code

21/23

Binary instrumentation Disassembly

Static Instrumentation: Further Performance Improvements...

@ Most of BinCFI’s overhead comes from runtime code pointer translation

@ Question: Can we avoid this runtime translation?

e Requires code pointers to be translated at instrumentation time

@ Yes: For 64-bit position-independent binaries

e Almost all code on modern Linux distributions falls in this category
e Pointers are all explicitly identified in these binaries

e but there is no information on which of these point to code

@ Approach: Develop static analysis to distinguish code and data pointers

e Relies on detailed instruction semantics

22/23

Influential Work in Binary Instrumentation by Past Students
of CSE 509

Fine-grained binary code randomization [ACSAC 20, ACSAC ’17]

@ Accurate detection of function boundaries in binaries [DSN ’17]

Extracting instruction semantics from compiles [FSE *17, ASPLOS ’16]

Binary instrumentation for ROP Defense [ACSAC ’15]

Code and Control-flow integrity [ACSAC ’15]
@ Platform for Static Binary Instrumentation [VEE *14]

Control-flow Integrity for COTS Binaries [USENIC Sec ’13, Best paper award]

23/23

	Binary instrumentation
	Disassembly

