
CSE 509
Course Summary

2

Cryptography Basics

 Algorithm Vs Key
 Symmetric key ciphers (DES, AES, …)

 Block vs stream ciphers
 Public key techniques (RSA, …)

– Encryption Vs Signing
 When to use public vs symmetric crypto

– speed of encryption vs ease of key distribution
 Hash functions (MD5, SHA, …)
 Random number generation
 Applications

 Encryption (Block vs Stream Ciphers)
 Key generation
 Authentication
 Digital signatures
 Certificates

3

User Authentication

 Something you know (secret), have (badge, smartcard) or
are (biometrics)

 Password-based authentication
 History and weaknesses
 Offline/online attacks: Differences in methods and defenses
 Brute force vs Dictionary attacks
 Ease of remembering Vs guessing
 Password theft, Phishing and trusted path
 Variants and Improvements
– Master password and password managers (ssh, browsers, …)
– Multi-factor authentication

 Biometrics
 Network authentication

– Challenge/response protocols
– SSL, SSH, OTPs, ...

4

Processor and Virtual Machine Security
 Principles behind processor and OS security

– privileged mode and privileged instructions; kernel vs user code
– memory protection
– interrupts and system calls
– virtualized resources and access control

 Efficient virtualization
– Privileged vs sensitive instructions

 Process Vs Namespace Vs System virtualization
– Docker security

 Type I and Type II VMMs
 Paravirtualization Vs full virtualization
 Implementation techniques

 Binary translation, paravirtualization, hardware-assisted virtualization
 Memory virtualization
 Security applications

 Honeypots, sandboxes, malware analysis, high-assurance VMs
 Protection from compromised OS

5

OS Security and Access Control

 Terminology: Principal, subject, object, RM, Security kernel, TCB
 Discretionary Access Control

 Access control matrix
 Groups and RBAC
 ACLs

UNIX permission model
effective, real and saved userid, primary and supplementary groups
setuid and setgid

 Capabilities
 Trojan Horse and Mandatory Access Control

 MLS: Bell-La Padula, Biba models; Benefits and drawbacks of information flow
 Domain and Type Enforcement: SELinux; Benefits and drawbacks

 POSIX Capabilities
– Model, differences with classic capabilities

 Policies and mechanisms for containing untrusted code

– chroot jails, seccomp: basic, BPF and eBPF
– one-way isolation, information flow policies

 Other types of policies: Clark-Wilson policy, Chinese wall policy

6

Principles of Secure System Design

 Least privilege
 Fail-safe defaults (default deny)
 Economy of mechanism (simplicity => assurance)
 Complete mediation (look out for ways in which an

access control mechanism may be bypassed)
 Open design (no security by obscurity)
 Separation of privilege (similar to separation of duty)
 Least common mechanism (avoid unnecessary sharing)
 Psychological acceptability (onerous security

requirements will be actively subverted by users)

7

Software Vulnerabilities: Memory Errors

 Memory corruption exploits
 Stack-smashing
 Heap overflows
 Format-string bugs
 Integer overflows

 Exploit defenses
 DEP/NX
 Canaries
 Separating control data from

other data
 Randomization

Address-space (absolute or
relative address)

Data-space
Instruction-space

– CFI

 Advanced exploits:
– ROP

– double pointer attacks

– partial overflows

– information leakage

– heapspray

 Preventing memory
errors

 Definition of memory error
 Spatial vs Temporal Errors
 Defenses

8

 Example attacks
 SQL injection
 Command injection, script injection, ...
 XSS
 Path traversal
 Format string bugs
 Memory corruption/code injection attacks

 Defenses
 Static taint analysis
 Runtime fine-grained taint-tracking: data dependence,

control dependence, implicit flows.
 Taint-aware policy enforcement

Software Vulnerabilties: Injections

9

More Software Vulnerabilities …

 Browser attacks
 XSS
 CSRF

 CWE-25
 File-name based attacks

 Symlink attacks
 TOCTTOU attacks

How to succeed in races …

10

Program Transformations for Security

 General idea
 Maintain additional metadata, check policies using this

 Source-to-source transformations
 Guarding techniques
 Randomization techniques
 Full memory error detection
 Fine-grained taint-tracking
 Control-flow integrity

11

Malicious Code

 Current threat environment: Profit-driven crime
 Types

 Viruses
 Worms
 Spam
 Phishing
 Botnets
 Rootkits
 Spyware
 DDoS
 Extortion
 Cyberwar

12

Malicious code: Stealth Techniques

 Stealth and Obfuscation
 Behavioral obfuscation

Anti-virtualization and anti-analysis techniques
Trigger-driven

 Code obfuscation
Control-flow obfuscation
Data obfuscation
Encryption and packing
Polymorphism
Metamorphism

13

Untrusted code and Web Security

 Javascript
 Vs Java
 DOM model, BOM model

 HTTP protocol
 GET Vs POST, Responses
 Maintaining state: cookies; sessions; authentication
 HTML forms, parameters, server-side processing

 Same origin policy (SOP) and Frames
– Page isolation, cookie isolation, network isolation
– Ajax and XmlHttpRequests
– Caveats: Embedded scripts, external requests
 Reflected and persistent XSS; Defenses
 CSRF and defenses

 SSL Stripping and defenses (e.g., HSTS)
 Other attacks

 Clickjacking
 Timing attacks
 Logic vulnerabilities

14

Untrusted code defense

 Untrusted code implies
strong adversary, requires
correspondingly strong
defenses

 System-call interception

– Techniques and trade-offs

 Inline-reference monitors

– Issues, challenges

– Software-based fault-isolation: RISC
Vs CISC; PittSFIeld

– Control-flow integrity

 Coarse vs fine-grained,
implementation strategies

 Sandboxing (confinement
policies)

Policies are hard to write!
Indirect attacks!
Examples: Native Client,
WebAssembly

 Isolation
Virtual machines

–VMware, Xen, KVM, Qemu
One-way isolation

–With copy-on-write
Two-way isolation

–Smart phones
– Caveats

15

Program Transformation on Binaries

 Key challenges compared to source code
 disassembly techniques and challenges
 rewriting challenges

 Dynamic translation
 Dynamo Rio, Valgrind, Qemu, Pin, …
 How it achieves speed
 Applications: Program shepherding, Taint-tracking, ...

 Static instrumentation
– Disassembly
– Lifting to machine-independent intermediate code
– Pointer fixup
– Secure instrumentation

 Issues and limitations

16

Intrusion Detection

 Network intrusions
 DDoS
 Botnets
 Reflection attacks
 Worms

 Attack stages
 Probing
 DoS
 Privilege escalation

17

Intrusion Detection

 False positives and negatives
 Observation points:

 Host-based Vs Network intrusion detection
Benefits and drawbacks

 Techniques
 Anomaly detection
 Misuse detection
 Specification-based detection

 Algorithms
 Pattern-matching
 Machine learning

18

Host-based Intrusion Detection

 System call logs
 APT Campaigns

– Challenges: Stealth, sophistication, scale, duration

– Solutions

 Evasion: Mimicry attacks

19

Static Analysis for Vulnerability Detection

 Techniques to identify potential bugs and
vulnerabilities

 Requires a model of what is good behavior, or
bad behavior
 “Good behaviors” are typically application specific, and

hard to come by
 “Bad behaviors” can be somewhat more generic

 Common software vulnerabilities
– Buffer overflow, SQL injection, …

Inconsistencies
–Access check or locking on some program paths, but not others

20

Static Analysis

 Usually require source code
 Binary code analysis limited by absence of type/bounds

information, as well as higher level control structures
 Most program properties are undecidable

 Static analysis has to approximate in order to terminate.
Approximation means that analysis can be sound or
complete, but not both.

 Sound: Guaranteed to find all vulnerabilities
 Complete: No false positives
 Practical issues: FPs and FNs, scalability, range of

properties that can be supported, ...

21

Dynamic Analysis
 Manual testing
 Random testing (“fuzz testing”)

 Vulnerabilities often arise due to insufficient testing and optimistic
assumptions about input

 This means that incorrect inputs will cause unexpected behaviors
 Random input will typically cause crashes

Using a debugger or other means, hackers can find additional information to turn
the crash into an exploit

 Coverage-guided fuzzing
 Manually assisted fuzz testing

 In many cases, random inputs don't work, as they get discarded very
early

Most of the code is not exercised
 Better to ensure that some parts of input are valid, so as to traverse

more program paths
Remaining parts of input can be fuzzed

22

Symbolic Execution

 “Intelligent” approach that chooses inputs to
ensure more coverage
 Often based on some form of symbolic execution

Variables left unbound
As conditions are tested, constraints on unbound inputs are gathered,
depending on whether “then” or “else” clause is taken

When multiple conditions are present on the value of a variables, use
a constraint solving procedure to narrow down the range

 Key challenges
Range of constraints that can be handled
state-space explosion
Many approaches choose to bind variables to concrete values when
faced with these problems

 Penetration testing
 Just another name for dynamic vulnerability testing

23

Side-channel attacks and physical security

 Covert channels
 Intentionally embedded
 Implicit flows, timing, steganographic techniques, ...

 Side channel attacks
 Timing analysis, power monitoring
 Differential fault analysis
 Emanations (keyboard, power, screen/camera, shock sensor)
 Remanence

 Physical layer attacks and tamper resistance
 transmit info by file name or metadata (e.g., timestamp)

Information retrieved by checking file presence or stat
– No need to read the file (or have read permissions on the file)

 “Port-knocking”
Transmit info by probing network ports in a certain sequence

 tcp acks or retransmissions, packet fragmentation, …

24

Side-channel attacks and physical security

 Covert channels
– Timing, implicit flows, DNS requests, ...

 Side-channels
– Execution time

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

