R. Sekar

1/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Motivation

Amortized Analysis

Amortization
The spreading out of capital expenses for intangible assets over a specific period of

time (usually over the asset’s useful life) for accounting and tax purposes.

@ A clever trick used by accountants to average large one-time costs over time.

@ In algorithms, we use amortization to spread out the cost of expensive operations.

e Example: Re-sizing a hash table.

2/118

Amortized Rehashing

1. Intro

Motivation Vector and String Resizing

6. Disjoint sets
2. Aggregate

Inverted Trees

3. Charging Union by Depth
4. Potential Threaded Trees
5. Table resizing Path compression

3/118

@ Some operations have high worst-case cost, but we can show that the worst case

does not occur every time.

@ In this case, we can average the costs to obtain a better bound

4/118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Summation or Aggregate Method

@ Some operations have high worst-case cost, but we can show that the worst case

does not occur every time.

@ In this case, we can average the costs to obtain a better bound

Summation
Let T(n) be the worst-case running time for executing a sequence of n operations.

Then the amortized time for each operation is T(n)/n.

5/118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Summation or Aggregate Method

@ Some operations have high worst-case cost, but we can show that the worst case

does not occur every time.
@ In this case, we can average the costs to obtain a better bound

Summation
Let T(n) be the worst-case running time for executing a sequence of n operations.

Then the amortized time for each operation is T(n)/n.

Note: We are not making an “average case” argument about inputs. We are still talking

about worst-case performance.

6/118

@ What is the worst-case runtime of incr?

InerBO.)
i=0
while B[i]=1
Bli]=0
i++
Bli] =1

7/118

@ What is the worst-case runtime of incr?

_ o Simple answer: O(log n), where n = # of incr’s performed
i=0
while B[i]=1
Bli]=0
i+ +
Bli] =1

8/118

@ What is the worst-case runtime of incr?

_ o Simple answer: O(log n), where n = # of incr’s performed

i=0 @ What is the amortized runtime for n incr’s?
while B[i]=1
Bli]=0
i+ +
B[i] =1

9/118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Summation Example: Binary Counter

@ What is the worst-case runtime of incr?

o Simple answer: O(log n), where n = # of incr’s performed

Incr(B[0..])
i=0 e What is the amortized runtime for n incr’s?
while B[i]=1 o Easy to see that an incr will touch B[i] once every 2’ operations.
Blij=0
4=
B[i] =1

10/118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Summation Example: Binary Counter

@ What is the worst-case runtime of incr?

o Simple answer: O(log n), where n = # of incr’s performed

Incr(B[0..])
i=0 @ What is the amortized runtime for n incr’s?
while B[i]=1 o Easy to see that an incr will touch B[i] once every 2’ operations.
Blij=0 o Number of operations is thus
i+ + log n 1
BJi] = 1 n) oi=2n

4 i=0

11/118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Summation Example: Binary Counter

@ What is the worst-case runtime of incr?

o Simple answer: O(log n), where n = # of incr’s performed

Incr(B[0..])
i=0 @ What is the amortized runtime for n incr’s?
while B[i]=1 o Easy to see that an incr will touch B[i] once every 2’ operations.
Blij=0 o Number of operations is thus
i+ + log n 1
BJi] = 1 n) oi=2n

4 i=0

@ Thus, amortized cost per incr is O(1)

12/118

Certain operations charge more than their cost so as to pay for other operations. This J

allows total cost to be calculated while ignoring the second category of operations.

13/118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Charging Method

Certain operations charge more than their cost so as to pay for other operations. This

allows total cost to be calculated while ignoring the second category of operations.

@ In the counter example, we charge 2 units for each operation to change a 0-bit to
1-bit.

14/118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Charging Method

Certain operations charge more than their cost so as to pay for other operations. This

allows total cost to be calculated while ignoring the second category of operations.

@ In the counter example, we charge 2 units for each operation to change a 0-bit to
1-bit.

@ Pays for the cost of later flipping the 1-bit to 0-bit.

15/118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Charging Method

Certain operations charge more than their cost so as to pay for other operations. This

allows total cost to be calculated while ignoring the second category of operations.

@ In the counter example, we charge 2 units for each operation to change a 0-bit to
1-bit.

@ Pays for the cost of later flipping the 1-bit to 0-bit.
e Important: ensure you have charged enough.
@ We have satisfied this: a bit can be flipped from 1 to 0 only once after it is flipped from 0 to 1.

16/118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Charging Method

Certain operations charge more than their cost so as to pay for other operations. This

allows total cost to be calculated while ignoring the second category of operations.

@ In the counter example, we charge 2 units for each operation to change a 0-bit to
1-bit.
@ Pays for the cost of later flipping the 1-bit to 0-bit.

e Important: ensure you have charged enough.
@ We have satisfied this: a bit can be flipped from 1 to 0 only once after it is flipped from 0 to 1.
o Now we ignore costs of 1to 0 flips in the algorithm
o There is only one 0-to-1 bit flipping per call of incr!
e So, incr only costs 2 units for each invocation!

17/118

e Consider a stack with two operations:

push(x): Push a value x on the stack

pop(k): Pop off the top k elements

18/118

e Consider a stack with two operations:

push(x): Push a value x on the stack
pop(k): Pop off the top k elements

@ What is the cost of a mix of n push and pop operations?

@ Key problem: Worst-case cost of a pop is O(n)!

19/118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Stack Example

e Consider a stack with two operations:

push(x): Push a value x on the stack

pop(k): Pop off the top k elements
@ What is the cost of a mix of n push and pop operations?
@ Key problem: Worst-case cost of a pop is O(n)!

e Solution:
e Charge 2 units for each push: covers the cost of pushing, and also the cost of a

subsequent pop

20/118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Stack Example

e Consider a stack with two operations:
push(x): Push a value x on the stack

pop(k): Pop off the top k elements
@ What is the cost of a mix of n push and pop operations?
@ Key problem: Worst-case cost of a pop is O(n)!

e Solution:
e Charge 2 units for each push: covers the cost of pushing, and also the cost of a
subsequent pop

e A pushed item can be popped only once, so we have charged enough

21/118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Stack Example

e Consider a stack with two operations:
push(x): Push a value x on the stack

pop(k): Pop off the top k elements
@ What is the cost of a mix of n push and pop operations?
@ Key problem: Worst-case cost of a pop is O(n)!

e Solution:
o Charge 2 units for each push: covers the cost of pushing, and also the cost of a
subsequent pop
e A pushed item can be popped only once, so we have charged enough
o Now, ignore pop’s altogther, and trivially arrive at O(1) amortized cost for the sequence of

push/pop operations!
22/118

Define a potential for a data structure that is initially zero, and is always non-negative.

The amortized cost of an operation is the cost of the operation minus the change in

potential.

23/118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Potential Method

Define a potential for a data structure that is initially zero, and is always non-negative.
The amortized cost of an operation is the cost of the operation minus the change in

potential.

o Analogy with “potential” energy. “Potential” is prepaid cost that can be used
subsequently

o as the data structure changes and “releases” stored energy

24/118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Potential Method

Define a potential for a data structure that is initially zero, and is always non-negative.
The amortized cost of an operation is the cost of the operation minus the change in

potential.

o Analogy with “potential” energy. “Potential” is prepaid cost that can be used
subsequently

o as the data structure changes and “releases” stored energy

@ A more sophisticated technique that allows “charges” or “taxes” to be stored within

nodes in a data structure and used subsequently at a later time.

25/118

Stack:

@ Each push costs 2 units because a push increases potential energy by 1.

@ Pops can use the energy released by reduction in stack size!

26/118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Potential Method: Illustration

Stack:
@ Each push costs 2 units because a push increases potential energy by 1.

@ Pops can use the energy released by reduction in stack size!

Counter:
@ Define potential as the number one 1-bits
e Changing a 0 to 1 costs 2 units, one for the operation and one to pay for increase
in potential
@ Changes of 1to 0 can now be paid by released potential.

27/118

e To provide expected constant time access, collisions need to be limited

28/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Hash Tables

o To provide expected constant time access, collisions need to be limited

@ This requires hash table resizing when they become too full

o But this requires all entries to be deleted from current table and inserted into a table that

is larger — a very expensive operation.

29/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Hash Tables

o To provide expected constant time access, collisions need to be limited

@ This requires hash table resizing when they become too full
o But this requires all entries to be deleted from current table and inserted into a table that
is larger — a very expensive operation.
e Options:
1. Try to guess the table size right; if you guessed wrong, put up with the pain of low

performance.

30/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Hash Tables

o To provide expected constant time access, collisions need to be limited

@ This requires hash table resizing when they become too full
o But this requires all entries to be deleted from current table and inserted into a table that

is larger — a very expensive operation.

e Options:
1. Try to guess the table size right; if you guessed wrong, put up with the pain of low
performance.
2. Quit complaining, bite the bullet, and rehash as needed,;

31/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Hash Tables

o To provide expected constant time access, collisions need to be limited

@ This requires hash table resizing when they become too full
o But this requires all entries to be deleted from current table and inserted into a table that

is larger — a very expensive operation.

e Options:
1. Try to guess the table size right; if you guessed wrong, put up with the pain of low
performance.
2. Quit complaining, bite the bullet, and rehash as needed,;

3. Amortize: Rehash as needed, and prove that it does not cost much!

32/118

Amortize the cost of rehashing over other hash table operations)

33/118

Amortize the cost of rehashing over other hash table operations)

Approach 1: Rehash after a large number (say, 1K) operations.
Total cost of 1K ops = 1K for the ops + 1K for rehash = 2K

34/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehashing

Amortize the cost of rehashing over other hash table operations |

Approach 1: Rehash after a large number (say, 1K) operations.

Total cost of 1K ops = 1K for the ops + 1K for rehash = 2K

Note: We may have at most 1K elements in the table after 1K operations, so we may
need to rehash at most 1K times.

So, amortized cost is just 2!

35/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehashing

Amortize the cost of rehashing over other hash table operations |

Approach 1: Rehash after a large number (say, 1K) operations.

Total cost of 1K ops = 1K for the ops + 1K for rehash = 2K

Note: We may have at most 1K elements in the table after 1K operations, so we may
need to rehash at most 1K times.

So, amortized cost is just 2!

Are we done?

36/118

Are we done?

Consider total cost after 2K, 3K, and 4K operations:

T(2K) = 2K + 1K (first rehash) + 2K (second rehash) = 5K

37/118

Are we done?

Consider total cost after 2K, 3K, and 4K operations:

T(2K) = 2K + 1K (first rehash) + 2K (second rehash) = 5K
T(3K) = 3K + 1K (1* rehash) + 2K (2" rehash) + 3K (3™..) = 9K

38/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (2)

Are we done?

Consider total cost after 2K, 3K, and 4K operations:

T(2K) = 2K + 1K (first rehash) + 2K (second rehash) = 5K
T(3K) = 3K + 1K (1% rehash) + 2K (2" rehash) + 3K (3..) = 9K
T(4K) = 4K + 1K + 2K + 3K + 4K = 14K

39/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (2)

Are we done?

Consider total cost after 2K, 3K, and 4K operations:

T(2K) = 2K + 1K (first rehash) + 2K (second rehash) = 5K
T(3K) = 3K + 1K (1% rehash) + 2K (2" rehash) + 3K (3..) = 9K
T(4K) = 4K + 1K + 2K + 3K + 4K = 14K

Hmmm. This is growing like n?, so amortized cost will be O(n)

Need to try a different approach.

40/118

Approach 2: Double the hash table whenever it gets full

Say, you start with an empty table of size N. For simplicity, assume only insert

operations.

41/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (3)

Approach 2: Double the hash table whenever it gets full

Say, you start with an empty table of size N. For simplicity, assume only insert
operations.

You invoke N insert operations, then rehash to a 2N table.

T(N) = N + N (rehashing N entries) = 2N

42/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (3)

Approach 2: Double the hash table whenever it gets full

Say, you start with an empty table of size N. For simplicity, assume only insert
operations.

You invoke N insert operations, then rehash to a 2N table.
T(N) = N + N (rehashing N entries) = 2N
Now, you can insert N more before needing rehash.

T(2N) = T(N) + N + 2N (rehashing 2N entries) = 5N

43/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (3)

Approach 2: Double the hash table whenever it gets full

Say, you start with an empty table of size N. For simplicity, assume only insert
operations.

You invoke N insert operations, then rehash to a 2N table.
T(N) = N + N (rehashing N entries) = 2N
Now, you can insert N more before needing rehash.
T(2N) = T(N) + N + 2N (rehashing 2N entries) = 5N
Now, you can insert 2N more before needing rehash:

T(4N) = T(2N) + 2N + 4N (rehashing 4N entries) = 11N

44/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (3)

Approach 2: Double the hash table whenever it gets full
Say, you start with an empty table of size N. For simplicity, assume only insert
operations.
You invoke N insert operations, then rehash to a 2N table.
T(N) = N + N (rehashing N entries) = 2N
Now, you can insert N more before needing rehash.
T(2N) = T(N) + N + 2N (rehashing 2N entries) = 5N
Now, you can insert 2N more before needing rehash:
T(4N) = T(2N) + 2N + 4N (rehashing 4N entries) = 11N
The general recurrence is T(n) = T(n/2) + 1.5n, which is linear.

So, amortized cost is constant!
45/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (4)

Alternatively, we can think in terms of charging.
Each insert operation can be charged 3 units of cost:

@ One for the insert operation
@ One for rehashing of this element at the end of this run of inserts

@ One for rehashing an element that was already in the hash table when this run
began

46/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (4)

Alternatively, we can think in terms of charging.
Each insert operation can be charged 3 units of cost:

@ One for the insert operation
@ One for rehashing of this element at the end of this run of inserts

@ One for rehashing an element that was already in the hash table when this run
began

A run contains as many elements as the hash table at the beginning of run — so we
have accounted for all costs.

47/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (4)

Alternatively, we can think in terms of charging.
Each insert operation can be charged 3 units of cost:

@ One for the insert operation

@ One for rehashing of this element at the end of this run of inserts

@ One for rehashing an element that was already in the hash table when this run
began

A run contains as many elements as the hash table at the beginning of run — so we

have accounted for all costs.

Thus, rehashing

@ increases the costs of insertions by a factor of 3.

@ lookup costs are unchanged.

48/118

o Alternatively, we can think in terms of potential.

@ Hash table as a spring: as more elements are inserted, the spring has to be

compressed to make room.

49/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (5)

o Alternatively, we can think in terms of potential.

e Hash table as a spring: as more elements are inserted, the spring has to be
compressed to make room.

@ Let |H| denote the capacity and « the occupancy of H
e Define potential as 0 when a < 0.5 and 2(« — 0.5)| H| otherwise.

50/ 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (5)

o Alternatively, we can think in terms of potential.

@ Hash table as a spring: as more elements are inserted, the spring has to be
compressed to make room.

@ Let |H| denote the capacity and « the occupancy of H
e Define potential as 0 when a < 0.5 and 2(« — 0.5)| H| otherwise.

e Immediately after resize, let the hash table capacity be k. Note o < 0.5 so potential
is 0.

51/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (5)

Alternatively, we can think in terms of potential.

Hash table as a spring: as more elements are inserted, the spring has to be

compressed to make room.

Let |H| denote the capacity and « the occupancy of H

Define potential as 0 when a < 0.5 and 2(a — 0.5)|H| otherwise.

Immediately after resize, let the hash table capacity be k. Note o < 0.5 so potential
is 0.

Each insert (after « reaches 0.5) costs 3 units: one for the operation, and 2 for the

increase in potential.

52/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (5)

Alternatively, we can think in terms of potential.

Hash table as a spring: as more elements are inserted, the spring has to be
compressed to make room.

Let |H| denote the capacity and « the occupancy of H

Define potential as 0 when a < 0.5 and 2(a — 0.5)|H| otherwise.

Immediately after resize, let the hash table capacity be k. Note o < 0.5 so potential
is 0.

Each insert (after « reaches 0.5) costs 3 units: one for the operation, and 2 for the

increase in potential.

When «a reaches 1, the potential is 2k. After resizing to 2k, potential falls to 0, and

the released 2k cost pays for rehashing 2k elements.
53/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (6)

e What if we increase the size by a factor less than 2?
o Is there a threshold t > 1 such that expansion by a factor less than t won’t yield
amortized constant time?
e What happens if we want to support both deletes and inserts, and want to make
sure that the table never uses more than k times the actual number of elements?

o Is there a minimum value of k for which this can be achieved?
e Do you need a different threshold for expansion and contraction? Are there any

constraints on the relationship between these two thresholds to ensure amortized

constant time?

54/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized performance of Vectors vs Lists

Linked lists: Data structures of choice if you don’t know the # of elements in advance.

Space inefficient: 2x or more memory for very small objects.
Poor cache performance: Pointer chasing is cache unfriendly.

Sequential access: No fast access to kth element.
Vectors: Dynamically-sized arrays have none of these problems. But resizing is

expensive.
@ Is it possible to achieve good amortized performance?

@ When should the vector be expanded/contracted?
@ What operations can we support in constant amortized time? Inserts? insert at

end? concatenation?

Strings: We can raise similar questions as Vectors.
55/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Disjoint Sets

i

@ Represent disjoint sets as “inverted trees’

e Each element has a parent pointer ™

@ To compute the union of set A with B, simply make B’s root the parent of A’s root.

A directed-tree representation of two sets {B, E} and {A,C, D, F,G,H}.

56/118

procedure makeset (x)
(x) ==z
rank(z) =0

function find(x)
while z #7w(x): x=7(x)

return x

57/118

procedure makeset (x)
(x) ==z
rank(z) =0

function find(x)
while z #7w(x): x=7(x)
return x

procedure union(x,y)
r, = find(x)
r, = find(y)

(7)) = I

58/118

procedure makeset (x)
(x) ==z
rank(z) =0

function find(x)
while z #7w(x): x=7(x)
return x

procedure union(x,y)
r, = find(x)
r, = find(y)

(7)) = I

omplexity

e makeset takes O(1) time

59/118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Disjoint Sets (2)

Inverted Trees Union by Depth Threaded Trees Path compression

Complexity
procedure makeset (z) e makeset takes O(1) time
m(z) = e find takes time equal to depth of set:
rank(z) =0

O(n) in the worst case.

function find(x)
while z #7m(x): x=m(x)

return x

procedure union(x,y)

r, = find(x)
r, = find(y)
m(r) = rc

60/118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Disjoint Sets (2)

Inverted Trees Union by Depth Threaded Trees Path compression

Complexity
procedure makeset (z) e makeset takes O(1) time
m(z) = e find takes time equal to depth of set:
rank(z) =0 O(n) in the worst case.
function find (z) @ union takes O(1) time on a root element;
while z# n(z): = =n(z) in the worst case, its complexity matches

find.

return z

procedure union(x,y)

r, = find(x)
r, = find(y)
m(ry) = rx

61/118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Disjoint Sets (2)

Inverted Trees Union by Depth Threaded Trees Path compression

Complexity
procedure makeset (z) e makeset takes O(1) time
m(z) = e find takes time equal to depth of set:
rank(z) =0 O(n) in the worst case.
function find (z) @ union takes O(1) time on a root element;
while z# n(z): == m(z) in the worst case, its complexity matches

find.
return x

Amortized complexity
procedure union(x,y)

r, = find(x) @ Can you construct a worst-case example,
r, = find(y) where N operations take O(N?) time?

62/118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Disjoint Sets (2)

Inverted Trees Union by Depth Threaded Trees Path compression

procedure makeset (x)

m(r) =x

rank(z) =0

function find(x)

while z # 7w(x): =«

procedure union(x,y)

return x
r, = find(x)
r, = find(y)

m(z)

Complexity
e makeset takes O(1) time

e find takes time equal to depth of set:

O(n) in the worst case.

@ union takes O(1) time on a root element;

in the worst case, its complexity matches
find.

Amortized complexity
@ Can you construct a worst-case example,

where N operations take O(N?) time?

e Can we improve this?

63/118

Intro Aggregate Charging Potential Table resizing Disjoint sets nverted Tre

Disjoint Sets with Union by Depth

es Union by Depth Threaded Trees Path compression

procedure union (x,y)
r, = £ind(z)

ry = £ind(y)

if r,=7ry: return

procedure makeset (x)

m(z) =x if rank(ry) > rank(ry):
rank(z) =0 m(ry) =7y
else:

function find(x) ()
) m(r,) =r
while z #n(z): = =7n(x x y
(@) (=) if rank(rz) = rank(ry):

return z
rank(ry) = rank(ry) +1

64/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Disjoint Sets with Union by Depth (2)

Figure 5.6 A sequence of disjoint-set operations. Superscripts denote rank.

After makeset(A),makeset(B),...,makeset(G):

After union(A, D),union(B, E),union(C, F):

b L

65/118

After union(B,G):

® @ @

66/118

e Asymptotic complexity of makeset unchanged.

e union has become a bit more expensive, but only modestly.

67/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Complexity of disjoint sets w/ union by depth

@ Asymptotic complexity of makeset unchanged.

e union has become a bit more expensive, but only modestly.

@ What about find?
o A sequence of N operations can create at most N elements

o So, maximum set size is O(N)

68/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Complexity of disjoint sets w/ union by depth

@ Asymptotic complexity of makeset unchanged.

e union has become a bit more expensive, but only modestly.

@ What about find?
o A sequence of N operations can create at most N elements
o So, maximum set size is O(N)
e With union by rank, each increase in rank can occur only after a doubling of elements in

the set

69/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Complexity of disjoint sets w/ union by depth

@ Asymptotic complexity of makeset unchanged.

e union has become a bit more expensive, but only modestly.

@ What about find?
o A sequence of N operations can create at most N elements
o So, maximum set size is O(N)
e With union by rank, each increase in rank can occur only after a doubling of elements in
the set
Observation

The number of nodes of rank k never exceeds N/2k

70/ 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Complexity of disjoint sets w/ union by depth

@ Asymptotic complexity of makeset unchanged.

e union has become a bit more expensive, but only modestly.

@ What about find?
e A sequence of N operations can create at most N elements
o So, maximum set size is O(N)
e With union by rank, each increase in rank can occur only after a doubling of elements in

the set

Observation

The number of nodes of rank k never exceeds N/2k

e So, height of trees is bounded by log N

71/118

e Height of trees is bounded by log N

72/118

e Height of trees is bounded by log N

@ Thus we have a complexity of O(log N) for find
e Question: Is this bound tight?

73/118

e Height of trees is bounded by log N

@ Thus we have a complexity of O(log N) for find
e Question: Is this bound tight?

From here on, we limit union operations to only root nodes, so their cost is O(1).

74/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Complexity of disjoint sets w/ union by depth (2)

e Height of trees is bounded by log N

@ Thus we have a complexity of O(log N) for find
e Question: Is this bound tight?

From here on, we limit union operations to only root nodes, so their cost is O(1).

This requires find to be moved out of union into a separate operation, and

hence the total number of operations increases, but only by a constant factor.

75/ 118

Idea: Why not force depth to be 1? Then find will have O(1) complexity!

76/118

Intro Aggregate Charging Potential Table resizing Disjoint sets nverted Trees Union by Depth Threaded Trees Path compression

Improving find performance

Idea: Why not force depth to be 1? Then £ind will have O(1) complexity!

Approach: Threaded Trees

0
e dh 7

77/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Improving find performance

Idea: Why not force depth to be 1? Then £ind will have O(1) complexity!

Approach: Threaded Trees

o o
e dh 7

Problem: Worst-case complexity of union becomes O(n)

Solution:
@ Merge smaller set with larger set

@ Amortize cost of union over other operations
78/ 118

@ Other than cost of updating parent pointers, union costs O(1)

79/118

@ Other than cost of updating parent pointers, union costs O(1)

o Idea: Charge the cost of updating a parent pointer to an element.

80/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Sets w/ threaded trees: Amortized analysis

@ Other than cost of updating parent pointers, union costs O(1)
o Idea: Charge the cost of updating a parent pointer to an element.

o Key observation: Each time an element’s parent pointer changes, it is in a set that
is twice as large as before

81/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Sets w/ threaded trees: Amortized analysis

@ Other than cost of updating parent pointers, union costs O(1)
o Idea: Charge the cost of updating a parent pointer to an element.

o Key observation: Each time an element’s parent pointer changes, it is in a set that
is twice as large as before

o So, with n operations, you can at most O(log n) parent pointer updates per element

82/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Sets w/ threaded trees: Amortized analysis

@ Other than cost of updating parent pointers, union costs O(1)
o Idea: Charge the cost of updating a parent pointer to an element.

o Key observation: Each time an element’s parent pointer changes, it is in a set that
is twice as large as before

o So, with n operations, you can at most O(log n) parent pointer updates per element

@ Thus, amortized cost of n operations, consisting of some mix of makeset, find

and union is at most nlog n

83/118

@ Can we combine the best elements of the two approaches?

84/118

@ Can we combine the best elements of the two approaches?

o Threaded trees use eager union while the original approach used a lazy approach

85/118

@ Can we combine the best elements of the two approaches?

o Threaded trees use eager union while the original approach used a lazy approach

e Eager approach is better for £ind, while being lazy is better for union.

86/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Further improvement

e Can we combine the best elements of the two approaches?
o Threaded trees use eager union while the original approach used a lazy approach
o Eager approach is better for £ind, while being lazy is better for union.

@ So, why not use lazy approach for union and eager approach for £ind?

87/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Further improvement

@ Can we combine the best elements of the two approaches?
o Threaded trees use eager union while the original approach used a lazy approach
o Eager approach is better for £ind, while being lazy is better for union.

@ So, why not use lazy approach for union and eager approach for £ind?

e Path compression: Retains lazy union, but when a find (x) is called, eagerly
promotes x to the level below the root

88/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Further improvement

@ Can we combine the best elements of the two approaches?

o Threaded trees use eager union while the original approach used a lazy approach
o Eager approach is better for £ind, while being lazy is better for union.

@ So, why not use lazy approach for union and eager approach for £ind?

e Path compression: Retains lazy union, but when a find (x) is called, eagerly
promotes x to the level below the root

o Actually, we promote x, w(x), (7 (x)), (7w (7 (x))) and so on.

89/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Further improvement

e Can we combine the best elements of the two approaches?
o Threaded trees use eager union while the original approach used a lazy approach
o Eager approach is better for £ind, while being lazy is better for union.
@ So, why not use lazy approach for union and eager approach for £ind?

e Path compression: Retains lazy union, but when a find (x) is called, eagerly

promotes x to the level below the root
o Actually, we promote x, w(x), (7 (x)), (7w (7 (x))) and so on.

e As a result, subsequent calls to find x or its parents become cheap.

90/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Further improvement

e Can we combine the best elements of the two approaches?
o Threaded trees use eager union while the original approach used a lazy approach
e Eager approach is better for £ind, while being lazy is better for union.

@ So, why not use lazy approach for union and eager approach for £ind?
e Path compression: Retains lazy union, but when a find (x) is called, eagerly
promotes x to the level below the root

o Actually, we promote x, w(x), (7 (x)), (7w (7 (x))) and so on.

e As a result, subsequent calls to find x or its parents become cheap.

@ From here on, we let rank be defined by the union algorithm

e For root node, rank is same as depth
e But once a node becomes a non-root, its rank stays fixed,

o even when path compression decreases its depth.
91/118

find(/) followed by find(K)
(&) ()

& © @ ® @@ & ©o
®® ©® ® @ @ @
® @ @)

(@)

EECECRCEGIORTRC)
@@@ 92/118

Amortized cost per operation of n set operations is O(log™ n) where

log™ x = smallest k such that log(log(- - - log(x)---)) =1
—_——

k times

93/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Sets w/ Path compression: Amortized analysis

Amortized cost per operation of n set operations is O(log™ n) where
log™ x = smallest k such that log(log(- - - log(x)---)) =1
—_——

k times
Note: log™(x) < 5 for virtually any n of practical relevance. Specifically,

Iog*(265536) _ |og*(22222) —5

94/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Sets w/ Path compression: Amortized analysis

Amortized cost per operation of n set operations is O(log™ n) where
log™ x = smallest k such that log(log(- - - log(x)---)) =1
—_——

k times
Note: log™(x) < 5 for virtually any n of practical relevance. Specifically,

Iog*(265536) _ |og*(22222) —5

Note that 2°°°% is approximately a 20,000 digit decimal number.
We will never be able to store input of that size, at least not in our universe. (Universe
contains may be 10’ elementary particles.)

So, we might as well treat log™(n) as O(1).

95/118

@ For noperations, rank of any node falls in the range |0, log n

96/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Path compression: Amortized analysis (2)

e For noperations, rank of any node falls in the range [0, log n]

e Divide this range into following groups:
(1], [2], [3-4], [5-16], [17-2"°], [2"® + 1-2°"%], ...
Each range is of the form [k-2¢"]

97/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Path compression: Amortized analysis (2)

e For noperations, rank of any node falls in the range [0, log n]

e Divide this range into following groups:
[1], [2], [3-4], [5-16], [17-2"], [2"® + 1-2°%], ...
Each range is of the form [k-2¢"]

e Let G(v) be the group rank(v) belongs to: G(v) = log™(rank(v))

98/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Path compression: Amortized analysis (2)

e For noperations, rank of any node falls in the range [0, log n]

e Divide this range into following groups:
[1], [2], [3-4], [5-16], [17-2"°], [2"® + 1-2%°%¢], . ..
Each range is of the form [k-2¢"]
e Let G(v) be the group rank(v) belongs to: G(v) = log™(rank(v))

@ Note: when a node becomes a non-root, its rank never changes

99/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Path compression: Amortized analysis (2)

e For noperations, rank of any node falls in the range [0, log n]
e Divide this range into following groups:
[1], [2], [3-4], [5-16], [17-2"], [2"® + 1-2°%] . ..
Each range is of the form [k-2¢"]
e Let G(v) be the group rank(v) belongs to: G(v) = log™(rank(v))
@ Note: when a node becomes a non-root, its rank never changes

Key Idea
Give an “allowance” to a node when it becomes a non-root. This allowance will be

used to pay costs of path compression operations involving this node.

100/ 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Path compression: Amortized analysis (2)

e For noperations, rank of any node falls in the range [0, log n]
e Divide this range into following groups:
[1], [2], [3-4], [5-16], [17-2"], [2"® + 1-2°%] . ..
Each range is of the form [k-2¢"]
e Let G(v) be the group rank(v) belongs to: G(v) = log™(rank(v))
@ Note: when a node becomes a non-root, its rank never changes

Key Idea
Give an “allowance” to a node when it becomes a non-root. This allowance will be
used to pay costs of path compression operations involving this node.

For a node whose rank is in the range [k-2¢""], the allowance is 2¢~".

101/118

@ Recall that number of nodes of rank r is at most n/2"

102/118

@ Recall that number of nodes of rank r is at most n/2"

@ Recall that a node of rank is in the range [k-2%""] is given an allowance of 2¢~".

103/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Total allowance handed out

@ Recall that number of nodes of rank r is at most n/2"
@ Recall that a node of rank is in the range [k-2%""] is given an allowance of 2¢~".

e Total allowance handed out to nodes with ranks in the range [k-2¢""] is therefore

given by

n
k=1 (— +

n k—1
gt) <2

104/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Total allowance handed out

@ Recall that number of nodes of rank r is at most n/2"
@ Recall that a node of rank is in the range [k-2%""] is given an allowance of 2¢~".

e Total allowance handed out to nodes with ranks in the range [k-2¢""] is therefore

given by

n n n
2k (— + +ot _zzk—‘) < 2k =n

2k 2k+1 2k—1

@ Since total number of ranges is log™ n, total allowance granted to all nodes is nlog™ n

105/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Total allowance handed out

@ Recall that number of nodes of rank r is at most n/2"

Recall that a node of rank is in the range [k-2%~"] is given an allowance of 2¢~".

Total allowance handed out to nodes with ranks in the range [k-2""] is therefore

given by

k=1 (1 n n < k=1 n
2 (gt gm) S2 g =

Since total number of ranges is log” n, total allowance granted to all nodes is nlog* n

We will spread this cost across all n operations, thus contributing O(log™ n) to each

operation.

106/118

@ Cost of a find equals # of parent pointers followed

e Each pointer followed is updated to point to root of current set.

107/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Paying for all £ind’s

@ Cost of a find equals # of parent pointers followed

e Each pointer followed is updated to point to root of current set.

e Key idea: Charge the cost of updating m(p) to:
o Case 1:If G(m(p)) # G(p), then charge it to the current find operation

e Case 2: Otherwise, charge it to p’s allowance.

108/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Paying for all £ind’s

@ Cost of a find equals # of parent pointers followed

e Each pointer followed is updated to point to root of current set.

e Key idea: Charge the cost of updating m(p) to:
o Case 1:If G(m(p)) # G(p), then charge it to the current find operation

e Can apply only log"* ntimes: a leaf’s G-value is at least 1, and the root’s G-value is at most log™ n.

e Case 2: Otherwise, charge it to p’s allowance.

109/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Paying for all £ind’s

@ Cost of a find equals # of parent pointers followed

e Each pointer followed is updated to point to root of current set.

e Key idea: Charge the cost of updating m(p) to:
o Case 1:If G(m(p)) # G(p), then charge it to the current find operation

e Can apply only log"* ntimes: a leaf’s G-value is at least 1, and the root’s G-value is at most log™ n.

e Adds only log™ n to cost of find
e Case 2: Otherwise, charge it to p’s allowance.

110/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Paying for all £ind’s

@ Cost of a find equals # of parent pointers followed

e Each pointer followed is updated to point to root of current set.

e Key idea: Charge the cost of updating m(p) to:
o Case 1:If G(m(p)) # G(p), then charge it to the current find operation
e Can apply only log"* ntimes: a leaf’s G-value is at least 1, and the root’s G-value is at most log™ n.
e Adds only log™ n to cost of find

e Case 2: Otherwise, charge it to p’s allowance.
o Need to show that we have enough allowance to to pay each time this case occurs.

111/118

Increases.

112/118

@ Let p be involved in a series of £ind’s, with g; being its parent after the ith £ind. Note

rank(p) < rank(qy) < rank(q,) < rank(q,) < ---

113/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Paying for all £ind’s (2)

o If w(p) is updated, then the rank of p’s parent increases.

@ Let p be involved in a series of £ind’s, with g; being its parent after the ith £ind. Note

rank(p) < rank(qo) < rank(q:) < rank(q;) < ---

@ Let m be the number of such operations before p’s parent has a higher G-value than p, i.e.

G(p) = G(gm) < G(gm+1)-

5

114/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Paying for all £ind’s (2)

o If w(p) is updated, then the rank of p’s parent increases.

Let p be involved in a series of find’s, with g; being its parent after the ith £ind. Note

rank(p) < rank(qo) < rank(q:) < rank(q;) < ---

Let m be the number of such operations before p’s parent has a higher G-value than p, i.e.,

G(p) = G(gm) < G(gm+1)-

@ Recall that
o A G(p) = r then r corresponds to a range [k-2¢~"] where k < rank(p) < 2¢~'. Since

G(p) = G(qm), gm < 2k

115/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Paying for all £ind’s (2)

If 7(p) is updated, then the rank of p’s parent increases.

Let p be involved in a series of find’s, with g; being its parent after the ith £ind. Note

rank(p) < rank(qo) < rank(q:) < rank(q,) < ---

Let m be the number of such operations before p’s parent has a higher G-value than p, i.e.

G(p) = G(gm) < G(qm-+1)-
Recall that
o A G(p) = r then r corresponds to a range [k-2¢~"] where k < rank(p) < 2¢~'. Since

G(p) = G(qm), gm < 2k
o The allowance given to p is also 2€~!

5

116/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Paying for all £ind’s (2)

o If w(p) is updated, then the rank of p’s parent increases.

@ Let p be involved in a series of £ind’s, with g; being its parent after the ith £ind. Note

rank(p) < rank(qo) < rank(q:) < rank(q,) < ---

@ Let m be the number of such operations before p’s parent has a higher G-value than p, i.e.

G(p) = G(gm) < G(qm+1)-
@ Recall that
o A G(p) = r then r corresponds to a range [k-2¢~"] where k < rank(p) < 2¢~'. Since

G(p) = G(qm), gm < 2k
o The allowance given to p is also 2€~!

So, there is enough allowance for all promotions up to m.

5

117/118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Paying for all £ind’s (2)

o If w(p) is updated, then the rank of p’s parent increases.

@ Let p be involved in a series of £ind’s, with g; being its parent after the ith £ind. Note

rank(p) < rank(qo) < rank(q:) < rank(q,) < ---

Let m be the number of such operations before p’s parent has a higher G-value than p, i.e.,

G(p) = G(gm) < G(qm+1)-

@ Recall that
o A G(p) = r then r corresponds to a range [k-2¢~"] where k < rank(p) < 2¢~'. Since

G(p) = G(qm), gm < 2k
o The allowance given to p is also 2€~!

(]

So, there is enough allowance for all promotions up to m.

After m 4 1th find, the find operation will pay for pointer updates, as G(7(p)) > G(p)

from here on.
118/ 118

	Intro
	Motivation

	Aggregate
	Charging
	Potential
	Table resizing
	Amortized Rehashing
	Vector and String Resizing

	Disjoint sets
	Inverted Trees
	Union by Depth
	Threaded Trees
	Path compression

