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Intro Backtracking Branch and Bound Approximation

Coping with NP-Completeness

Sometimes you are faced with hard problems — problems for which no efficient
solutions exist.

Step 1: Try to show that the problem is NP-complete

This way, you can avoid wasting a lot of time on a fruitless search for an efficient

algorithm

Step 2a: Sometimes, you may be able to say “let us solve a different problem”

you may be able leverage some special structure of your problem domain that enables a

more efficient solution

Step 2b: Other times, you are stuck with a difficult problem and you need to make
the best of it.

We discuss different coping strategies in such cases.
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Intro Backtracking Branch and Bound Approximation

Intelligent Exhaustive Search

Exhaustive search will work for almost any problem

Hamiltonian Tour: Consider an edge e.
Either e = (u, v) is part of the tour, in which case you can complete the tour by finding

a path from u to v in G − e.

Or, e is not part of the tour, in which case you can find the tour by searching G − e.

Either case leads to a recurrence T (m) = 2T (m− 1), i.e., T (m) = O(2m). (Here m
is the number of edge in G.)

SAT: Try all 2n possible truth assignments to the n variables in your formula.

The key point is to be intelligent in the way this search is conducted, so that the
algorithm is faster than 2n in practice.
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Intro Backtracking Branch and Bound Approximation

Backtracking

Depth-first approach to perform exhaustive search

In the above example, first try to find a solution that includes e
Looking down further, the algorithm will make additional choices of edges to include:
e1, e2, ..., ek

Only when all paths that include e fail to be Hamiltonian, we consider the alternative (i.e.,

Hamiltonian path that doesn’t include e)

Key goal is to recognize and prune failing paths as quickly as possible.
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Intro Backtracking Branch and Bound Approximation

Backtracking Approach for SATFigure 9.1 Backtracking reveals that φ is not satisfiable.
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In the case of SAT, this test declares failure if there is an empty clause, success if there are
no clauses, and uncertainty otherwise. The backtracking procedure then has the following
format.

Start with some problem P0

Let S = {P0}, the set of active subproblems
Repeat while S is nonempty:
choose a subproblem P ∈ S and remove it from S
expand it into smaller subproblems P1, P2, . . . , Pk

For each Pi:
If test(Pi) succeeds: halt and announce this solution
If test(Pi) fails: discard Pi

Otherwise: add Pi to S
Announce that there is no solution

For SAT, the choose procedure picks a clause, and expand picks a variable within that clause.
We have already discussed some reasonable ways of making such choices.
With the right test, expand, and choose routines, backtracking can be remarkably effec-

tive in practice. The backtracking algorithm we showed for SAT is the basis of many successful
satisfiability programs. Another sign of quality is this: if presented with a 2SAT instance, it
will always find a satisfying assignment, if one exists, in polynomial time (Exercise 9.1)!

9.1.2 Branch-and-bound
The same principle can be generalized from search problems such as SAT to optimization
problems. For concreteness, let’s say we have a minimization problem; maximization will

272
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Intro Backtracking Branch and Bound Approximation

Backtracking Approach for SAT : Complexity

There are two cases, based on the variable w chosen for branching:

Case 1: Both w and w occur in the formula In this case, both branches are present.
Moreover, both w and w are eliminated from the formula at this point, so we
have the recurrence:

T (n) = 2T (n− 2) + O(n)

Case 2: Only one of them is present. In this case, only one of the branches needs
exploring, so we have the recurrence

T (n) = T (n− 1) + O(n)

Clearly, case 1 will dominate, so let us ignore case 2. Case 1 yields a solution of
O(2n/2) or O(1.414n), which is much better than 2n.
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Intro Backtracking Branch and Bound Approximation

Backtracking Approach for SAT : Improvements

We can improve the worst-case bound by choosing a variable that occurs most
times

If it occurs k times, then you have the recurrence

T (n) = 2T (n− k)

whose solution is O(2n/k).
Of course, you won’t be able to repeatedly find a variable that occurs k times, so this solution is
meaningless in practice — it just goes to show the exponential pruning effect of a frequently
occurring variable

Another strategy: pick a clause with fewest number of variables, and pick those
variables in sequence.

Exercise: Show that the backtracking algorithm solves 2SAT in polynomial time
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Intro Backtracking Branch and Bound Approximation

Branch and Bound

Generalization of backtracking to support optimization problems

Requires a lower bound on the cost of solutions that may result from a partial
solution

If the cost is higher than that of a previously encountered solution, then this subproblem

need not be explored further.

Sometimes, we may rely on estimates of cost rather than strict lower bounds.
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Intro Backtracking Branch and Bound Approximation

Branch and Bound for TSP

Begin with a vertex a — the goal is to compute a TSP that begins and ends at a.

We begin the search by considering an edge from a to its neighbor x , another edge
from x to a neighbor of x , and so on.

Partial solutions represent a path from a to some vertex b, passing through a set
S ⊂ V of vertices.

Completing a partial solution requires the computation of a low cost path from b to a
using only vertices in V − S
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Intro Backtracking Branch and Bound Approximation

Lower bound on costs of partial TSP solutions

To complete the path from b to a, we must incur at least the following costs

Cost of going from b to a vertex in V − S, i.e, the minimum weight edge from b to a vertex

in V − S

Cost of going from a V − S vertex to a, i.e, the minimum weight edge from a to a vertex in

V − S
Minimal cost path in V − S that visits all v ∈ V − S
Note: Lower bound is the cost of MST for V − S

By adding the above three cost components, we arrive at a lower bound on
solutions derivable from a partial solution.
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Intro Backtracking Branch and Bound Approximation

Illustration of Branch-and Bound for TSP

Figure 9.2 (a) A graph and its optimal traveling salesman tour. (b) The branch-and-bound
search tree, explored left to right. Boxed numbers indicate lower bounds on cost.
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Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover TSP Knapsack: Illustration of FPTAS

Approximation Algorithms

Relax optimality requirement: permit approximate solutions

Solutions that are within a certain distance from optimum

Not heuristics: Approximate algorithms guarantee that solutions are within a certain
distance from optimal

Differs from heuristics that can sometimes return very bad solutions.

How to define “distance from optimal?”
Additive: Optimal solution SO and the Solution SA returned by approximation
algorithm differ only by a constant.
Quality of approximation is extremely good, but unfortunately, most problems don’t

admit such approximations

Factor: SO and SA are related by a factor.
Most known approximation algorithms fall into this category.
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Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover TSP Knapsack: Illustration of FPTAS

Approximation Factors

Constant: SA ≤ kSO for some fixed constant k.

Examples: Vertex cover, Facility location, ...

Logarithmic: SA ≤ O(logk n) · SO .
Examples: Set cover, dominating set, ...

Polynomial: SA ≤ O(nk) · SO .
Examples: Max Clique, Independent set, graph coloring, ...

PTAS: SA ≤ (1+ ϵ) · SO for any ϵ > 0.
(“Polynomial-time approximation scheme”)

FPTAS: PTAS with runtime O(ϵ−k) for some k. (“Fully PTAS”)

Examples: Knapsack, Bin-packing, Euclidean TSP, ...
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Approximation Factors
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Bin Packing

Problem
Pack objects of different weight into bins that have a fixed capacity in such a way that
minimizes bins used.

Obvious similarity to Knapsack

Bin-packing is NP-hard

Very good (and often very simple) approximation algorithms exist
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First-fit Algorithm
A simple, greedy algorithm

FirstFit(x[1..n])

for i = 1 to n do
Put x[i] into the first open bin large enough to hold it

Theorem
All open bins, except possibly one, are more than half-full

Proof: Suppose that there are two bins b and b′ that are less than half-full. Then,
items in b′ would have fitted into b, and so the FF algorithm would never have opened
the bin b′ — a contradiction.

Theorem
First-fit is optimal within a factor of 2: specifically, SA < 2SO + 1.
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Best-Fit Algorithm

Another simple, greedy algorithm

Instead of using the first bin that will can hold x[i], use the open bin whose
remaining capacity is closest to x[i]

Prefers to keep bins close to full.

Factor-2 optimality can established easily.
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Other algorithms for Bin-packing

First-fit decreasing strategy first sorts the items so that x[i] ≥ x[i + 1] and then runs
first-fit.

Best-fit decreasing strategy first sorts the items so that x[i] ≥ x[i + 1] and then runs
best-fit.

Both FFD and BFD achieve approximation factors of 11/9SO + 6/9.
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Set Cover

Problem
Given a collection S1, ..., Sm of subsets of B, find a minimum collection Si1 , . . . , Sik such
that

⋃k
j=1 Sij = B

Greedy Set Cover Algorithm

GSC(S,B)

cover = ∅; covered = ∅
while covered ̸= B do
Let new be the set in S − cover containing
the maximum number of elements of B− covered

add new to cover ; covered = covered ∪ new

return cover
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Analysis of Greedy Set Cover
Theorem

Greedy set cover is approximate with a factor of ln n, where n = |B|

Proof:
Let k be the size of optimal cover, and nt be the number of elements left uncovered after t
steps of GSC

These nt elements are covered by k sets in optimal cover⇒ these k sets must cover nt/k
uncovered elements on average.

Thus, GSC will find at least one set that covers nt/k elements.

This yields the recurrence for bounding uncovered elements:
U(t + 1) = nt − nt/k = nt(1− 1/k) = U(t)(1− 1/k)

The solution to recurrence is n(1− 1/k)t < ne−t/k

Thus, after t = k ln n steps, less than 1 (i.e., no) elements uncovered

Thus, GSC computes a cover at most ln n times the optimal cover.
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Vertex Cover

Note that a vertex cover is a set cover for (S, E), where
S = {{(v, u)|(v, u) ∈ E}|v ∈ V}

i.e., S contains a set for each vertex; this set lists all edges incident on v

Thus GSC is an approximate algorithm for vertex cover.

But ln n is not a factor to be thrilled about — can we do better?

Actually, we can do much better! That too with a very simple algorithm.
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Vertex Cover
Consider any edge (u, v).

Either u or v must belong to any vertex cover.

If we accept SA = 2SO , we can avoid the guesswork by simply picking both vertices!

Approximate Vertex Cover Algorithm

AVC(G = (V , E))

C = ∅
while G is not empty
pick any (u, v) ∈ E

C = C ∪ {u, v}
G = G − {u, v}

return C

68 / 75



Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover TSP Knapsack: Illustration of FPTAS

Vertex Cover
Consider any edge (u, v).

Either u or v must belong to any vertex cover.

If we accept SA = 2SO , we can avoid the guesswork by simply picking both vertices!

Approximate Vertex Cover Algorithm

AVC(G = (V , E))

C = ∅
while G is not empty
pick any (u, v) ∈ E

C = C ∪ {u, v}
G = G − {u, v}

return C
69 / 75



Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover TSP Knapsack: Illustration of FPTAS

Euclidean TSP

Our starting point is once again the MST

Note that no TSP solution can be smaller than MST

Deleting an edge from TSP solution yields a spanning tree

Simple algorithm:
Start with the MST
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Approximating Euclidean TSP: An Illustration

9.2.3 TSP
The triangle inequality played a crucial role in making the k-CLUSTER problem approximable.
It also helps with the TRAVELING SALESMAN PROBLEM: if the distances between cities satisfy
the metric properties, then there is an algorithm that outputs a tour of length at most 1.5
times optimal. We’ll now look at a slightly weaker result that achieves a factor of 2.
Continuing with the thought processes of our previous two approximation algorithms, we

can ask whether there is some structure that is easy to compute and that is plausibly related
to the best traveling salesman tour (as well as providing a good lower bound on OPT). A little
thought and experimentation reveals the answer to be the minimum spanning tree.
Let’s understand this relation. Removing any edge from a traveling salesman tour leaves

a path through all the vertices, which is a spanning tree. Therefore,
TSP cost ≥ cost of this path ≥ MST cost.

Now, we somehow need to use the MST to build a traveling salesman tour. If we can use each
edge twice, then by following the shape of the MST we end up with a tour that visits all the
cities, some of them more than once. Here’s an example, with the MST on the left and the
resulting tour on the right (the numbers show the order in which the edges are taken).
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16

Therefore, this tour has a length at most twice the MST cost, which as we’ve already seen is
at most twice the TSP cost.
This is the result we wanted, but we aren’t quite done because our tour visits some cities

multiple times and is therefore not legal. To fix the problem, the tour should simply skip any
city it is about to revisit, and instead move directly to the next new city in its list:

Tulsa

Wichita

Little
Rock

Dallas

Houston

San Antonio

El Paso

Albuquerque

Amarillo

279

Start with the MST

Make a tour that uses each MST edge twice (forward and backward)

This tour is like TSP in ending at the starting node, and differs from TSP by visiting some

vertices and edges twice
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Approximating Euclidean TSP: An Illustration (2)
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279Avoid revisits by short-circuiting to next unvisited vertex

By triangle inequality, short-circuit distance can only be less than the distance
following MST edges.

Thus, tour length less than 2xMST, i.e., approximate within a factor 2.
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Knapsack

Knap01(w, v, n,W )

V =
∑n

j=0 v[j]

K [j, 0] = 0,∀0 ≤ j ≤ V

for j = 1 to n do
for v = 1 to V do
if v[j] > v then K [j, v] = K [j−1, v]
else K [j, v] = min(K [j−1, v],K [j−1, v−v[j]] + w[j])

return maximum v such that K [n, v] ≤ W

Computes minimum weight of knapsack for a given value.

Iterates over all possible items and all possible values: O(nV )

we derive a polynomial time approximate algorithm from this
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FPTAS for 0-1 Knapsack

Knap01FPTAS(w, v, n,W , ϵ)

v ′i =
⌊

vi
max1≤j≤n vj

· n
ϵ

⌋
, for 1 ≤ i ≤ n

Knap01(w, v ′, n,W )

Rescaling consists of two steps:
Express value of each item relative to the most valuable item
If we worked with real values, this step won’t change the optimal solution

Multiply relative values by a factor n/ϵ to get an integer

Floor operation introduces an error ≤ 1 in v ′i (e.g., ⌊3.99⌋ = 3)

Error in Knap01 output = error in
∑

v ′i , which is at most n · 1

We scale each v ′i by n/ϵ, so relative error is n/(n/ϵ) = ϵ

Thus we have achieved the desired approximation.
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FPTAS for 0-1 Knapsack: Runtime

Knap01FPTAS(w, v, n,W , ϵ)

v ′i =
⌊

vi
max1≤j≤n vj

· n
ϵ

⌋
, for 1 ≤ i ≤ n

Knap01(w, v ′, n,W )

Note that we are using Knap01 with rescaled values, so the complexity is O(nV ′).

Note: V ′ =
∑n

1 v
′
i ≤ n ·max1≤j≤n v ′j

It is easy to see from definition of v ′i that max1≤j≤n v ′j = n/ϵ. Substituting this into
the above equation yields a complexity of:

O(nV ′) ≤ O(n(n ·max1≤i≤n v ′i )) = O(n(n · (n/ϵ))) = O(n3/ϵ)

By varying ϵ, we can trade off accuracy against runtime.
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