R. Sekar

1/75

Intro Backtracking Branch and Bound Approximation

Coping with NP-Completeness

@ Sometimes you are faced with hard problems — problems for which no efficient

solutions exist.

o Step 1: Try to show that the problem is NP-complete
e This way, you can avoid wasting a lot of time on a fruitless search for an efficient

algorithm

2/75

Intro Backtracking Branch and Bound Approximation

Coping with NP-Completeness

@ Sometimes you are faced with hard problems — problems for which no efficient

solutions exist.

o Step 1: Try to show that the problem is NP-complete
e This way, you can avoid wasting a lot of time on a fruitless search for an efficient

algorithm

@ Step 2a: Sometimes, you may be able to say “let us solve a different problem”
e you may be able leverage some special structure of your problem domain that enables a

more efficient solution

3/75

Intro Backtracking Branch and Bound Approximation

Coping with NP-Completeness

@ Sometimes you are faced with hard problems — problems for which no efficient

solutions exist.

o Step 1: Try to show that the problem is NP-complete
e This way, you can avoid wasting a lot of time on a fruitless search for an efficient

algorithm

@ Step 2a: Sometimes, you may be able to say “let us solve a different problem”
e you may be able leverage some special structure of your problem domain that enables a

more efficient solution
@ Step 2b: Other times, you are stuck with a difficult problem and you need to make

the best of it.

e We discuss different coping strategies in such cases.
4/75

@ Exhaustive search will work for almost any problem

5/75

@ Exhaustive search will work for almost any problem

Hamiltonian Tour: Consider an edge e.
o Either e = (u, v) is part of the tour, in which case you can complete the tour by finding

a path fromutovin G —e.

6/75

Intro Backtracking Branch and Bound Approximation

Intelligent Exhaustive Search

@ Exhaustive search will work for almost any problem
Hamiltonian Tour: Consider an edge e.
o Either e = (u, v) is part of the tour, in which case you can complete the tour by finding
a path fromutovin G —e.

e Or, eis not part of the tour, in which case you can find the tour by searching G — e.

7/75

Intro Backtracking Branch and Bound Approximation

Intelligent Exhaustive Search

@ Exhaustive search will work for almost any problem
Hamiltonian Tour: Consider an edge e.
o Either e = (u, v) is part of the tour, in which case you can complete the tour by finding
a path fromutovin G —e.
e Or, eis not part of the tour, in which case you can find the tour by searching G — e.
Either case leads to a recurrence T(m) = 2T(m — 1), i.e., T(m) = O(2™). (Here m
is the number of edge in G.)

8/75

Intro Backtracking Branch and Bound Approximation

Intelligent Exhaustive Search

@ Exhaustive search will work for almost any problem
Hamiltonian Tour: Consider an edge e.
o Either e = (u, v) is part of the tour, in which case you can complete the tour by finding
a path fromutovin G —e.
e Or, eis not part of the tour, in which case you can find the tour by searching G — e.
Either case leads to a recurrence T(m) = 2T(m — 1), i.e., T(m) = O(2™). (Here m

is the number of edge in G.)

SAT: Try all 2" possible truth assignments to the n variables in your formula.

9/75

Intro Backtracking Branch and Bound Approximation

Intelligent Exhaustive Search

@ Exhaustive search will work for almost any problem

Hamiltonian Tour: Consider an edge e.

o Either e = (u, v) is part of the tour, in which case you can complete the tour by finding
a path fromutovin G —e.

e Or, eis not part of the tour, in which case you can find the tour by searching G — e.
Either case leads to a recurrence T(m) = 2T(m — 1), i.e., T(m) = O(2™). (Here m
is the number of edge in G.)

SAT: Try all 2" possible truth assignments to the n variables in your formula.

@ The key point is to be intelligent in the way this search is conducted, so that the

algorithm is faster than 2" in practice.

10/75

@ Depth-first approach to perform exhaustive search

11/75

Intro Backtracking Branch and Bound Approximation

Backtracking

@ Depth-first approach to perform exhaustive search
o In the above example, first try to find a solution that includes e
o Looking down further, the algorithm will make additional choices of edges to include:
€1, €, ..., e
e Only when all paths that include e fail to be Hamiltonian, we consider the alternative (i.e.,

Hamiltonian path that doesn’t include e)

12/75

Intro Backtracking Branch and Bound Approximation

Backtracking

@ Depth-first approach to perform exhaustive search

o In the above example, first try to find a solution that includes e
o Looking down further, the algorithm will make additional choices of edges to include:

€1,€7,..., €
e Only when all paths that include e fail to be Hamiltonian, we consider the alternative (i.e.,

Hamiltonian path that doesn’t include e)

e Key goal is to recognize and prune failing paths as quickly as possible.

13/75

Intro Backtracking Branch and Bound Approximation

Backtracking Approach for SAT

((wvavyva),(wva), (zVy), (yVi),(zVE),(@Vz))

w =20 w =1

(@VyVv2),@),@Vy),yVvE)) (@vy), V2, (2),E)
= 1l

=0 rx=1 z=0 z

(wv2).@.wvz)) (0.wvz)) (@vm,0) (@ve), ®.0)

14/75

Intro Backtracking Branch and Bound Approximation

Backtracking Approach for SAT: Complexity

@ There are two cases, based on the variable w chosen for branching;:

Case 1: Both w and W occur in the formula In this case, both branches are present.

Moreover, both w and w are eliminated from the formula at this point, so we

have the recurrence:
T(n) =2T(n—2)+ O(n)

15/75

Intro Backtracking Branch and Bound Approximation

Backtracking Approach for SAT: Complexity

@ There are two cases, based on the variable w chosen for branching;:

Case 1: Both w and W occur in the formula In this case, both branches are present.

Moreover, both w and w are eliminated from the formula at this point, so we

have the recurrence:
T(n) =2T(n—2)+ O(n)

Case 2: Only one of them is present. In this case, only one of the branches needs

exploring, so we have the recurrence

T(n)=T(n—1)+ O(n)

16/75

Intro Backtracking Branch and Bound Approximation

Backtracking Approach for SAT: Complexity

@ There are two cases, based on the variable w chosen for branching;:

Case 1: Both w and W occur in the formula In this case, both branches are present.

Moreover, both w and w are eliminated from the formula at this point, so we

have the recurrence:
T(n) =2T(n—2)+ O(n)

Case 2: Only one of them is present. In this case, only one of the branches needs

exploring, so we have the recurrence
T(n)=T(n—1)+ O(n)

@ Clearly, case 1 will dominate, so let us ignore case 2. Case 1 yields a solution of
0(2"2) or O(1.414"), which is much better than 2".

17/75

@ We can improve the worst-case bound by choosing a variable that occurs most

times

18/75

@ We can improve the worst-case bound by choosing a variable that occurs most

times
o If it occurs k times, then you have the recurrence
T(n) =2T(n— k)

whose solution is 0(2"/%).

19/75

Intro Backtracking Branch and Bound Approximation

Backtracking Approach for SAT: Improvements

@ We can improve the worst-case bound by choosing a variable that occurs most
times
o If it occurs k times, then you have the recurrence
T(n) =2T(n— k)
whose solution is O(2"/%).
e Of course, you won’t be able to repeatedly find a variable that occurs k times, so this solution is

meaningless in practice — it just goes to show the exponential pruning effect of a frequently

occurring variable

20/75

Intro Backtracking Branch and Bound Approximation

Backtracking Approach for SAT: Improvements

@ We can improve the worst-case bound by choosing a variable that occurs most
times
o If it occurs k times, then you have the recurrence
T(n) =2T(n— k)
whose solution is O(2"/%).
e Of course, you won’t be able to repeatedly find a variable that occurs k times, so this solution is

meaningless in practice — it just goes to show the exponential pruning effect of a frequently

occurring variable

@ Another strategy: pick a clause with fewest number of variables, and pick those

variables in sequence.

21/75

Intro Backtracking Branch and Bound Approximation

Backtracking Approach for SAT: Improvements

@ We can improve the worst-case bound by choosing a variable that occurs most
times
o If it occurs k times, then you have the recurrence
T(n) =2T(n— k)
whose solution is O(2"/%).
e Of course, you won’t be able to repeatedly find a variable that occurs k times, so this solution is

meaningless in practice — it just goes to show the exponential pruning effect of a frequently

occurring variable

@ Another strategy: pick a clause with fewest number of variables, and pick those

variables in sequence.

o Exercise: Show that the backtracking algorithm solves 2SAT in polynomial time

22/75

@ Generalization of backtracking to support optimization problems

23/75

Intro Backtracking Branch and Bound Approximation

Branch and Bound

@ Generalization of backtracking to support optimization problems
@ Requires a lower bound on the cost of solutions that may result from a partial

solution
o If the cost is higher than that of a previously encountered solution, then this subproblem

need not be explored further.

24/75

Intro Backtracking Branch and Bound Approximation

Branch and Bound

@ Generalization of backtracking to support optimization problems

@ Requires a lower bound on the cost of solutions that may result from a partial
solution
o If the cost is higher than that of a previously encountered solution, then this subproblem

need not be explored further.

e Sometimes, we may rely on estimates of cost rather than strict lower bounds.

25/75

@ Begin with a vertex a — the goal is to compute a TSP that begins and ends at a.

26/75

Intro Backtracking Branch and Bound Approximation

Branch and Bound for TSP

@ Begin with a vertex a — the goal is to compute a TSP that begins and ends at a.

@ We begin the search by considering an edge from a to its neighbor x, another edge

from x to a neighbor of x, and so on.

27/75

Intro Backtracking Branch and Bound Approximation

Branch and Bound for TSP

@ Begin with a vertex a — the goal is to compute a TSP that begins and ends at a.

@ We begin the search by considering an edge from a to its neighbor x, another edge

from x to a neighbor of x, and so on.

@ Partial solutions represent a path from a to some vertex b, passing through a set

S C V of vertices.

28/75

Intro Backtracking Branch and Bound Approximation

Branch and Bound for TSP

@ Begin with a vertex a — the goal is to compute a TSP that begins and ends at a.

@ We begin the search by considering an edge from a to its neighbor x, another edge

from x to a neighbor of x, and so on.

@ Partial solutions represent a path from a to some vertex b, passing through a set

S C V of vertices.

e Completing a partial solution requires the computation of a low cost path from b to a

using only verticesin V — S

29/75

@ To complete the path from b to a, we must incur at least the following costs

o Cost of going from b to a vertex in V — S, i.e, the minimum weight edge from b to a vertex
inV—S§

30/75

Intro Backtracking Branch and Bound Approximation

Lower bound on costs of partial TSP solutions

@ To complete the path from b to a, we must incur at least the following costs
o Cost of going from b to a vertex in V — S, i.e, the minimum weight edge from b to a vertex
inV-—-3S
e Cost of going from a V — S vertex to q, i.e, the minimum weight edge from a to a vertex in
V-5

31/75

Intro Backtracking Branch and Bound Approximation

Lower bound on costs of partial TSP solutions

@ To complete the path from b to a, we must incur at least the following costs
o Cost of going from b to a vertex in V — S, i.e, the minimum weight edge from b to a vertex
inV-—-3S
e Cost of going from a V — S vertex to q, i.e, the minimum weight edge from a to a vertex in
V-5
e Minimal cost path in V — Sthat visitsallve V- §
@ Note: Lower bound is the cost of MST for V — S

32/75

Intro Backtracking Branch and Bound Approximation

Lower bound on costs of partial TSP solutions

@ To complete the path from b to a, we must incur at least the following costs
o Cost of going from b to a vertex in V — S, i.e, the minimum weight edge from b to a vertex
inV-—-3S
e Cost of going from a V — S vertex to q, i.e, the minimum weight edge from a to a vertex in
V-5
e Minimal cost path in V — Sthat visitsallve V- §
@ Note: Lower bound is the cost of MST for V — S

e By adding the above three cost components, we arrive at a lower bound on

solutions derivable from a partial solution.

33/75

34

@ Relax optimality requirement: permit approximate solutions

e Solutions that are within a certain distance from optimum

35/75

Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover TSP Knapsack: Illustration of FPTAS

Approximation Algorithms

o Relax optimality requirement: permit approximate solutions
o Solutions that are within a certain distance from optimum
@ Not heuristics: Approximate algorithms guarantee that solutions are within a certain

distance from optimal

o Differs from heuristics that can sometimes return very bad solutions.

36/75

Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover TSP Knapsack: Illustration of FPTAS

Approximation Algorithms

o Relax optimality requirement: permit approximate solutions

o Solutions that are within a certain distance from optimum

@ Not heuristics: Approximate algorithms guarantee that solutions are within a certain
distance from optimal

o Differs from heuristics that can sometimes return very bad solutions.

e How to define “distance from optimal?”

37/75

Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover TSP Knapsack: Illustration of FPTAS

Approximation Algorithms

o Relax optimality requirement: permit approximate solutions

o Solutions that are within a certain distance from optimum

@ Not heuristics: Approximate algorithms guarantee that solutions are within a certain
distance from optimal

o Differs from heuristics that can sometimes return very bad solutions.

e How to define “distance from optimal?”
Additive: Optimal solution Sp and the Solution S4 returned by approximation
algorithm differ only by a constant.
e Quality of approximation is extremely good, but unfortunately, most problems don’t

admit such approximations

38/75

Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover TSP Knapsack: Illustration of FPTAS

Approximation Algorithms

o Relax optimality requirement: permit approximate solutions

o Solutions that are within a certain distance from optimum

@ Not heuristics: Approximate algorithms guarantee that solutions are within a certain
distance from optimal

o Differs from heuristics that can sometimes return very bad solutions.

e How to define “distance from optimal?”
Additive: Optimal solution Sp and the Solution S4 returned by approximation
algorithm differ only by a constant.
e Quality of approximation is extremely good, but unfortunately, most problems don’t
admit such approximations
Factor: Sp and S4 are related by a factor.

e Most known approximation algorithms fall into this category. 39/75

Constant: Sy < kSp for some fixed constant k.

@ Examples: Vertex cover, Facility location, ...

40/75

Constant: Sy < kSp for some fixed constant k.

@ Examples: Vertex cover, Facility location, ...

Logarithmic: S, < O(log* n) - So.

@ Examples: Set cover, dominating set, ...

41/75

Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover TSP Knapsack: Illustration of FPTAS

Approximation Factors

Constant: S4 < kSp for some fixed constant k.
@ Examples: Vertex cover, Facility location, ...
Logarithmic: S, < O(log* n) - So.
@ Examples: Set cover, dominating set, ...

Polynomial: Sy < O(n¥) - So.

e Examples: Max Clique, Independent set, graph coloring, ...

42/75

Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover TSP Knapsack: Illustration of FPTAS

Approximation Factors

Constant: S4 < kSp for some fixed constant k.
@ Examples: Vertex cover, Facility location, ...
Logarithmic: S, < O(log* n) - So.
@ Examples: Set cover, dominating set, ...

Polynomial: Sy < O(n¥) - So.

e Examples: Max Clique, Independent set, graph coloring, ...

PTAS: Sp < (14 ¢€) - So for any € > 0.

(“Polynomial-time approximation scheme”)

43/75

Intro Backtracking Branch and Bound Approximation

Approximation Factors

Intro Bin packing Set Cover Vertex Cover TSP Knapsack: Illustration of FPTAS

Constant: S, < kS, for some fixed constant k.
@ Examples: Vertex cover, Facility location, ...
Logarithmic: S, < O(log* n) - So.
@ Examples: Set cover, dominating set, ...

Polynomial: Sy < O(n¥) - So.

e Examples: Max Clique, Independent set, graph coloring, ...

PTAS: Sp < (14 ¢€) - So for any € > 0.

(“Polynomial-time approximation scheme”)

FPTAS: PTAS with runtime O(¢~*) for some k. (“Fully PTAS”)
@ Examples: Knapsack, Bin-packing, Euclidean TSP, ...

44/75

Pack objects of different weight into bins that have a fixed capacity in such a way that

minimizes bins used.

45/75

Pack objects of different weight into bins that have a fixed capacity in such a way that

minimizes bins used.

@ Obvious similarity to Knapsack
e Bin-packing is NP-hard

@ Very good (and often very simple) approximation algorithms exist

46/75

A simple, greedy algorithm

for i=1to ndo
Put x[i] into the first open bin large enough to hold it

47/75

A simple, greedy algorithm

for i=1to ndo
Put x[i] into the first open bin large enough to hold it

All open bins, except possibly one, are more than half-full I

48/75

Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover TSP Knapsack: Illustration of FPTAS

First-fit Algorithm
A simple, greedy algorithm
FirstFit(x[1..n])

for i=1to ndo
Put x[i] into the first open bin large enough to hold it

Theorem
All open bins, except possibly one, are more than half-full

Proof: Suppose that there are two bins b and b’ that are less than half-full. Then,
items in b’ would have fitted into b, and so the FF algorithm would never have opened

the bin b’ — a contradiction. m

49/75

Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover TSP Knapsack: Illustration of FPTAS

First-fit Algorithm
A simple, greedy algorithm
FirstFit(x[1..n])

for i=1to ndo
Put x[i] into the first open bin large enough to hold it

Theorem
All open bins, except possibly one, are more than half-full

Proof: Suppose that there are two bins b and b’ that are less than half-full. Then,
items in b’ would have fitted into b, and so the FF algorithm would never have opened

the bin b’ — a contradiction. m

Theorem
First-fit is optimal within a factor of 2: specifically, Sy < 250 + 1.

50/75

Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover TSP Knapsack: Illustration of FPTAS

Best-Fit Algorithm

@ Another simple, greedy algorithm

@ Instead of using the first bin that will can hold x[i], use the open bin whose
remaining capacity is closest to x([i]

e Prefers to keep bins close to full.

@ Factor-2 optimality can established easily.

51/75

o First-fit decreasing strategy first sorts the items so that x[i] > x[i + 1] and then runs
first-fit.

52/75

Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover TSP Knapsack: Illustration of FPTAS

Other algorithms for Bin-packing

o First-fit decreasing strategy first sorts the items so that x[i] > x[i + 1] and then runs
first-fit.

@ Best-fit decreasing strategy first sorts the items so that x[i] > x[i + 1] and then runs
best-fit.

53/75

Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover TSP Knapsack: Illustration of FPTAS

Other algorithms for Bin-packing

o First-fit decreasing strategy first sorts the items so that x[i] > x[i + 1] and then runs
first-fit.

@ Best-fit decreasing strategy first sorts the items so that x[i] > x[i + 1] and then runs
best-fit.

@ Both FFD and BFD achieve approximation factors of 11/950 + 6/9.

54/75

Given a collection S, ..., S, of subsets of B, find a minimum collection S;,, ..., S, such
k
that J_, S; = B

55/75

Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover TSP Knapsack: Illustration of FPTAS

Set Cover

Problem |

Given a collection Sy, ..., S, of subsets of B, find a minimum collection S, ..., S, such
k

that Uj:1 S, =B

Greedy Set Cover Algorithm
GSC(S, B)
cover = (); covered = ()
while covered # B do
Let new be the set in S — cover containing
the maximum number of elements of B — covered
add new to cover; covered = covered U new

return cover
56/75

Greedy set cover is approximate with a factor of In n, where n = |B|

57/75

Greedy set cover is approximate with a factor of In n, where n = |B|

Proof:

@ Let k be the size of optimal cover, and n; be the number of elements left uncovered after ¢
steps of GSC

58/75

Greedy set cover is approximate with a factor of In n, where n = |B|

Proof:
@ Let k be the size of optimal cover, and n; be the number of elements left uncovered after ¢

steps of GSC
@ These n; elements are covered by k sets in optimal cover = these k sets must cover n;/k

uncovered elements on average.

59/75

Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover TSP Knapsack: Illustration of FPTAS

Analysis of Greedy Set Cover

Theorem

Greedy set cover is approximate with a factor of In n, where n = |B|

Proof:

@ Let k be the size of optimal cover, and n; be the number of elements left uncovered after t
steps of GSC

@ These n; elements are covered by k sets in optimal cover = these k sets must cover n;/k
uncovered elements on average.

@ Thus, GSC will find at least one set that covers n;/k elements.

60/75

Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover TSP Knapsack: Illustration of FPTAS

Analysis of Greedy Set Cover

Theorem

Greedy set cover is approximate with a factor of In n, where n = |B|

Proof:

@ Let k be the size of optimal cover, and n; be the number of elements left uncovered after t
steps of GSC

@ These n; elements are covered by k sets in optimal cover = these k sets must cover n;/k
uncovered elements on average.

@ Thus, GSC will find at least one set that covers n;/k elements.

@ This yields the recurrence for bounding uncovered elements:

U(t+1) = ne — n/k = n(1 — 1/k) = U(B)(1 — 1/K)

61/75

Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover TSP Knapsack: Illustration of FPTAS

Analysis of Greedy Set Cover

Theorem

Greedy set cover is approximate with a factor of In n, where n = |B|

Proof:

@ Let k be the size of optimal cover, and n; be the number of elements left uncovered after t
steps of GSC

@ These n; elements are covered by k sets in optimal cover = these k sets must cover n;/k
uncovered elements on average.

@ Thus, GSC will find at least one set that covers n;/k elements.

@ This yields the recurrence for bounding uncovered elements:
u(t+1)=n —n/k=n(1—1/k) = U(t)(1 — 1/k)

@ The solution to recurrence is n(1 — 1/k)t < ne~t/*

62/75

Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover TSP Knapsack: Illustration of FPTAS

Analysis of Greedy Set Cover

Theorem

Greedy set cover is approximate with a factor of In n, where n = |B|

Proof:

@ Let k be the size of optimal cover, and n; be the number of elements left uncovered after t
steps of GSC

@ These n; elements are covered by k sets in optimal cover = these k sets must cover n;/k
uncovered elements on average.

@ Thus, GSC will find at least one set that covers n;/k elements.

@ This yields the recurrence for bounding uncovered elements:
u(t+1)=n —n/k=n(1—1/k) = U(t)(1 — 1/k)

@ The solution to recurrence is n(1 — 1/k)t < ne~t/*

@ Thus, after t = kIn n steps, less than 1 (i.e., no) elements uncovered

63/75

Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover TSP Knapsack: Illustration of FPTAS

Analysis of Greedy Set Cover

Theorem

Greedy set cover is approximate with a factor of In n, where n = |B|

Proof:

@ Let k be the size of optimal cover, and n; be the number of elements left uncovered after t
steps of GSC

@ These n; elements are covered by k sets in optimal cover = these k sets must cover n;/k
uncovered elements on average.

@ Thus, GSC will find at least one set that covers n;/k elements.

@ This yields the recurrence for bounding uncovered elements:
u(t+1)=n —n/k=n(1—1/k) = U(t)(1 — 1/k)

@ The solution to recurrence is n(1 — 1/k)t < ne~t/*

@ Thus, after t = kIn n steps, less than 1 (i.e., no) elements uncovered

@ Thus, GSC computes a cover at most In n times the optimal cover. s

o Note that a vertex cover is a set cover for (S, E), where

S={(v,u)l(v,u) € E}|v € V}

e i.e., S contains a set for each vertex; this set lists all edges incident on v

65/75

o Note that a vertex cover is a set cover for (S, E), where

S={(v,u)l(v,u) € E}|v € V}

e i.e., S contains a set for each vertex; this set lists all edges incident on v

@ Thus GSC is an approximate algorithm for vertex cover.

66/75

Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover TSP Knapsack: Illustration of FPTAS

Vertex Cover

e Note that a vertex cover is a set cover for (S, E), where
S ={{(v,uv)|(v,u) € E}Jv € V}
o i.e., S contains a set for each vertex; this set lists all edges incident on v
@ Thus GSC is an approximate algorithm for vertex cover.

@ But In nis not a factor to be thrilled about — can we do better?

o Actually, we can do much better! That too with a very simple algorithm.

67/75

Consider any edge (u, v).
e Either u or v must belong to any vertex cover.

o If we accept Sy = 250, we can avoid the guesswork by simply picking both vertices!

68/75

Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover TSP Knapsack: Illustration of FPTAS

Vertex Cover

Consider any edge (u, v).
e Either u or v must belong to any vertex cover.

o If we accept Sy = 250, we can avoid the guesswork by simply picking both vertices!

Approximate Vertex Cover Algorithm
AVC(G = (V,E))
cC=190
while G is not empty
pick any (u,v) € E
C=CU{u v}
G=G—{u,v}

return C

69/75

@ Our starting point is once again the MST

@ Note that no TSP solution can be smaller than MST

o Deleting an edge from TSP solution yields a spanning tree

e Simple algorithm:
o Start with the MST

70/75

Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover TSP Knapsack: Illustration of FPTAS

Approximating Euclidean TSP: An Illustration

Wichita Wichita
® Q

Albuquerque : Albuquerque 7
o Amarillo s ‘;
® Little 12 ® Little
Rock \ Rock
9
El Paso El Paso Lo
 Houston _ 16— !9 Houston
1
San Antonio San Antonio

@ Start with the MST

@ Make a tour that uses each MST edge twice (forward and backward)

e This tour is like TSP in ending at the starting node, and differs from TSP by visiting some
vertices and edges twice

71/75

Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover TSP Knapsack: Illustration of FPTAS

Approximating Euclidean TSP: An Illustration (2)

Wichita Wichita
®
W\
&\ Tulsa
Ibuquerque o) Albuquerque
@
. ©
Little . Lit
O] Rock Amarillo O] Ror
Dallas
© 15 S
El Paso ElPaso ~~-_

L (2 Houston

6
. >— 9 Houston
/

San Antonio San Antonio

@ Avoid revisits by short-circuiting to next unvisited vertex
e By triangle inequality, short-circuit distance can only be less than the distance

following MST edges.

o Thus, tour length less than 2xMST, i.e., approximate within a factor 2.
72/75

Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover TSP Knapsack: Illustration of FPTAS

Knapsack

Knap01(w, v, n, W)
V=0,
K[j,0]=0,Y0 <<V
for j=1tondo
forv=1to Vdo
if v[j] > vthen K[j,v] = K[j—1,V]
else K[}, v] = min(K[j—1,v], K[j—1,v—v[j]] + w[j])
return maximum v such that K[n,v] < W

e Computes minimum weight of knapsack for a given value.
e lIterates over all possible items and all possible values: O(nV)

o we derive a polynomial time approximate algorithm from this
73/75

Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover TSP Knapsack: lllustration of FPTAS

FPTAS for 0-1 Knapsack

Knap01FPTAS(w, v, n, W, €)

/ Vi n .
Vi=|—— - —|,for1<i<n
maxi<j<n Vj €

Knap01(w, v/, n, W)

@ Rescaling consists of two steps:

o Express value of each item relative to the most valuable item
o If we worked with real values, this step won’t change the optimal solution

o Multiply relative values by a factor n/e to get an integer
@ Floor operation introduces an error < 1in v/ (e.g., [3.99] = 3)
@ Error in Knap01 output = error in > v/, which is at most n - 1

@ We scale each v/ by n/e, so relative error is n/(n/e) = €
74/75

Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover TSP Knapsack: lllustration of FPTAS

FPTAS for 0-1 Knapsack: Runtime

Knap01FPTAS(w, v, n, W ¢)

/ Vi n .
vi=|——— —|,for1<i<n
maxi<j<n Vj €

Knap01(w, v/, n, W)

o Note that we are using Knap01 with rescaled values, so the complexity is O(nV’).

@ Note: V' = "1v/ < n- maxi<j<n v}

o It is easy to see from definition of v/ that max,<j<, v; = n/e. Substituting this into
the above equation yields a complexity of:
O(nV') < O(n(n - maxi<i<, v)) = O(n(n - (n/€))) = O(n’/e)

@ By varying ¢, we can trade off accuracy against runtime.
75/75

	Intro
	Backtracking
	Branch and Bound
	Approximation
	Intro
	Bin packing
	Set Cover
	Vertex Cover
	TSP
	Knapsack: Illustration of FPTAS

