
Overview Kruskal Huffman Compression

CSE 548: Algorithms
Greedy Algorithms

R. Sekar

1 / 67

Overview Kruskal Huffman Compression

Overview

One of the strategies used to solve optimization problems

Multiple solutions exist; pick one of low (or least) cost

Greedy strategy: make a locally optimal choice, or simply, what appears best at the
moment

Often, locally optimality ̸⇒ global optimality

So, use with a great deal of care

Always need to prove optimality

If it is unpredictable, why use it?

It simplifies the task!

2 / 67

Overview Kruskal Huffman Compression

Overview

One of the strategies used to solve optimization problems

Multiple solutions exist; pick one of low (or least) cost

Greedy strategy: make a locally optimal choice, or simply, what appears best at the
moment

Often, locally optimality ̸⇒ global optimality

So, use with a great deal of care

Always need to prove optimality

If it is unpredictable, why use it?

It simplifies the task!

3 / 67

Overview Kruskal Huffman Compression

Overview

One of the strategies used to solve optimization problems

Multiple solutions exist; pick one of low (or least) cost

Greedy strategy: make a locally optimal choice, or simply, what appears best at the
moment

Often, locally optimality ̸⇒ global optimality

So, use with a great deal of care

Always need to prove optimality

If it is unpredictable, why use it?

It simplifies the task!

4 / 67

Overview Kruskal Huffman Compression

Making change

Given coins of denominations 25c/, 10c/, 5c/ and 1c/, make change for x cents
(0 < x < 100) using minimum number of coins.

Greedy solution

makeChange(x)

if (x = 0) return
Let y be the largest denomination that satisfies y ≤ x

Issue ⌊x/y⌋ coins of denomination y

makeChange(x mod y)

Show that it is optimal

Is it optimal for arbitrary denominations?

5 / 67

Overview Kruskal Huffman Compression

Making change

Given coins of denominations 25c/, 10c/, 5c/ and 1c/, make change for x cents
(0 < x < 100) using minimum number of coins.

Greedy solution

makeChange(x)

if (x = 0) return
Let y be the largest denomination that satisfies y ≤ x

Issue ⌊x/y⌋ coins of denomination y

makeChange(x mod y)

Show that it is optimal

Is it optimal for arbitrary denominations?

6 / 67

Overview Kruskal Huffman Compression

Making change

Given coins of denominations 25c/, 10c/, 5c/ and 1c/, make change for x cents
(0 < x < 100) using minimum number of coins.

Greedy solution

makeChange(x)

if (x = 0) return
Let y be the largest denomination that satisfies y ≤ x

Issue ⌊x/y⌋ coins of denomination y

makeChange(x mod y)

Show that it is optimal

Is it optimal for arbitrary denominations?
7 / 67

Overview Kruskal Huffman Compression

When does a Greedy algorithm work?

Greedy choice property

The greedy (i.e., locally optimal) choice is always consistent with some (globally)
optimal solution

What does this mean for the coin change problem?

Optimal substructure

The optimal solution contains optimal solutions to subproblems.

Implies that a greedy algorithm can invoke itself recursively after making a greedy
choice.

8 / 67

Overview Kruskal Huffman Compression

When does a Greedy algorithm work?

Greedy choice property

The greedy (i.e., locally optimal) choice is always consistent with some (globally)
optimal solution

What does this mean for the coin change problem?

Optimal substructure

The optimal solution contains optimal solutions to subproblems.

Implies that a greedy algorithm can invoke itself recursively after making a greedy
choice.

9 / 67

Overview Kruskal Huffman Compression

When does a Greedy algorithm work?

Greedy choice property

The greedy (i.e., locally optimal) choice is always consistent with some (globally)
optimal solution

What does this mean for the coin change problem?

Optimal substructure

The optimal solution contains optimal solutions to subproblems.

Implies that a greedy algorithm can invoke itself recursively after making a greedy
choice.

10 / 67

Overview Kruskal Huffman Compression

When does a Greedy algorithm work?

Greedy choice property

The greedy (i.e., locally optimal) choice is always consistent with some (globally)
optimal solution

What does this mean for the coin change problem?

Optimal substructure

The optimal solution contains optimal solutions to subproblems.

Implies that a greedy algorithm can invoke itself recursively after making a greedy
choice.

11 / 67

Overview Kruskal Huffman Compression

Knapsack Problem

A sack that can hold a maximum of x lbs

You have a choice of items you can pack in the sack

Maximize the combined “value” of items in the sack
item calories/lb weight

bread 1100 5
butter 3300 1
tomato 80 1
cucumber 55 2

0-1 knapsack: Take all of one item or none at all

Fractional knapsack: Fractional quantities acceptable

Greedy choice: pick item that maximizes calories/lb

Will a greedy algorithm work, with x = 5?

12 / 67

Overview Kruskal Huffman Compression

Knapsack Problem

A sack that can hold a maximum of x lbs

You have a choice of items you can pack in the sack

Maximize the combined “value” of items in the sack
item calories/lb weight

bread 1100 5
butter 3300 1
tomato 80 1
cucumber 55 2

0-1 knapsack: Take all of one item or none at all

Fractional knapsack: Fractional quantities acceptable

Greedy choice: pick item that maximizes calories/lb

Will a greedy algorithm work, with x = 5?

13 / 67

Overview Kruskal Huffman Compression

Knapsack Problem

A sack that can hold a maximum of x lbs

You have a choice of items you can pack in the sack

Maximize the combined “value” of items in the sack
item calories/lb weight

bread 1100 5
butter 3300 1
tomato 80 1
cucumber 55 2

0-1 knapsack: Take all of one item or none at all

Fractional knapsack: Fractional quantities acceptable

Greedy choice: pick item that maximizes calories/lb

Will a greedy algorithm work, with x = 5?

14 / 67

Overview Kruskal Huffman Compression

Knapsack Problem

A sack that can hold a maximum of x lbs

You have a choice of items you can pack in the sack

Maximize the combined “value” of items in the sack
item calories/lb weight

bread 1100 5
butter 3300 1
tomato 80 1
cucumber 55 2

0-1 knapsack: Take all of one item or none at all

Fractional knapsack: Fractional quantities acceptable

Greedy choice: pick item that maximizes calories/lb

Will a greedy algorithm work, with x = 5?
15 / 67

Overview Kruskal Huffman Compression

Fractional Knapsack

Greedy choice property

Proof by contradiction: Start with the assumption that there is an optimal solution
that does not include the greedy choice, and show a contradiction.

Optimal substructure

After taking as much of the item with jth maximal value/weight, suppose that the
knapsack can hold y more lbs.
Then the optimal solution for the problem includes the optimal choice of how to fill a
knapsack of size y with the remaining items.

Does not work for 0-1 knapsack because greedy choice property does not hold.
0-1 knapsack is NP-hard, but a pseudo-polynomial algorithm is available.

16 / 67

Overview Kruskal Huffman Compression

Fractional Knapsack

Greedy choice property

Proof by contradiction: Start with the assumption that there is an optimal solution
that does not include the greedy choice, and show a contradiction.

Optimal substructure

After taking as much of the item with jth maximal value/weight, suppose that the
knapsack can hold y more lbs.
Then the optimal solution for the problem includes the optimal choice of how to fill a
knapsack of size y with the remaining items.

Does not work for 0-1 knapsack because greedy choice property does not hold.
0-1 knapsack is NP-hard, but a pseudo-polynomial algorithm is available.

17 / 67

Overview Kruskal Huffman Compression

Fractional Knapsack

Greedy choice property

Proof by contradiction: Start with the assumption that there is an optimal solution
that does not include the greedy choice, and show a contradiction.

Optimal substructure

After taking as much of the item with jth maximal value/weight, suppose that the
knapsack can hold y more lbs.
Then the optimal solution for the problem includes the optimal choice of how to fill a
knapsack of size y with the remaining items.

Does not work for 0-1 knapsack because greedy choice property does not hold.
0-1 knapsack is NP-hard, but a pseudo-polynomial algorithm is available.

18 / 67

Overview Kruskal Huffman Compression Minimal Spanning Tree Kruskal’s Algorithm

Spanning Tree

A subgraph of a graph G = (V , E) that includes:

All the vertices V in the graph

A subset of E such that these edges form a tree

We consider connected undirected graphs, where the second condition for MST can be
replaced by

A maximal subset of E such that the subgraph has no cycles

A subset of E with |V | − 1 edges such that the subgraph is connected

A subset of E such that there is a unique path between any two vertices in the
subgraph

19 / 67

Overview Kruskal Huffman Compression Minimal Spanning Tree Kruskal’s Algorithm

Spanning Tree

A subgraph of a graph G = (V , E) that includes:

All the vertices V in the graph

A subset of E such that these edges form a tree

We consider connected undirected graphs, where the second condition for MST can be
replaced by

A maximal subset of E such that the subgraph has no cycles

A subset of E with |V | − 1 edges such that the subgraph is connected

A subset of E such that there is a unique path between any two vertices in the
subgraph

20 / 67

Overview Kruskal Huffman Compression Minimal Spanning Tree Kruskal’s Algorithm

Spanning Tree

A subgraph of a graph G = (V , E) that includes:

All the vertices V in the graph

A subset of E such that these edges form a tree

We consider connected undirected graphs, where the second condition for MST can be
replaced by

A maximal subset of E such that the subgraph has no cycles

A subset of E with |V | − 1 edges such that the subgraph is connected

A subset of E such that there is a unique path between any two vertices in the
subgraph

21 / 67

Overview Kruskal Huffman Compression Minimal Spanning Tree Kruskal’s Algorithm

Spanning Tree

A subgraph of a graph G = (V , E) that includes:

All the vertices V in the graph

A subset of E such that these edges form a tree

We consider connected undirected graphs, where the second condition for MST can be
replaced by

A maximal subset of E such that the subgraph has no cycles

A subset of E with |V | − 1 edges such that the subgraph is connected

A subset of E such that there is a unique path between any two vertices in the
subgraph

22 / 67

Overview Kruskal Huffman Compression Minimal Spanning Tree Kruskal’s Algorithm

Spanning Tree

A subgraph of a graph G = (V , E) that includes:

All the vertices V in the graph

A subset of E such that these edges form a tree

We consider connected undirected graphs, where the second condition for MST can be
replaced by

A maximal subset of E such that the subgraph has no cycles

A subset of E with |V | − 1 edges such that the subgraph is connected

A subset of E such that there is a unique path between any two vertices in the
subgraph

23 / 67

Overview Kruskal Huffman Compression Minimal Spanning Tree Kruskal’s Algorithm

Minimal Spanning Tree (MST)

A spanning tree with minimal cost. Formally:

Input: An undirected graph G = (V , E), a cost function w : E → R.

Output: A tree T = (V , E ′) such that E ′ ⊆ E that minimizes
∑

e∈E′ w(e)

Chapter 5

Greedy algorithms

A game like chess can be won only by thinking ahead: a player who is focused entirely on
immediate advantage is easy to defeat. But in many other games, such as Scrabble, it is
possible to do quite well by simply making whichever move seems best at the moment and not
worrying too much about future consequences.
This sort of myopic behavior is easy and convenient, making it an attractive algorithmic

strategy. Greedy algorithms build up a solution piece by piece, always choosing the next
piece that offers the most obvious and immediate benefit. Although such an approach can be
disastrous for some computational tasks, there are many for which it is optimal. Our first
example is that of minimum spanning trees.

5.1 Minimum spanning trees
Suppose you are asked to network a collection of computers by linking selected pairs of them.
This translates into a graph problem in which nodes are computers, undirected edges are
potential links, and the goal is to pick enough of these edges that the nodes are connected.
But this is not all; each link also has a maintenance cost, reflected in that edge’s weight. What
is the cheapest possible network?

A

B

C

D

E

F

4

1

4

3 4
2 5

6

4

One immediate observation is that the optimal set of edges cannot contain a cycle, because
removing an edge from this cycle would reduce the cost without compromising connectivity:

Property 1 Removing a cycle edge cannot disconnect a graph.
So the solution must be connected and acyclic: undirected graphs of this kind are called

trees. The particular tree we want is the one with minimum total weight, known as the
minimum spanning tree. Here is its formal definition.

Input: An undirected graph G = (V,E); edge weights we.

133

24 / 67

Overview Kruskal Huffman Compression Minimal Spanning Tree Kruskal’s Algorithm

Minimal Spanning Tree (MST)

Output: A tree T = (V,E �), with E� ⊆ E, that minimizes

weight(T) =
�

e∈E�

we.

In the preceding example, the minimum spanning tree has a cost of 16:

A

B

C

D

E

F

1

4

2 5
4

However, this is not the only optimal solution. Can you spot another?

5.1.1 A greedy approach
Kruskal’s minimum spanning tree algorithm starts with the empty graph and then selects
edges from E according to the following rule.

Repeatedly add the next lightest edge that doesn’t produce a cycle.

In other words, it constructs the tree edge by edge and, apart from taking care to avoid cycles,
simply picks whichever edge is cheapest at the moment. This is a greedy algorithm: every
decision it makes is the one with the most obvious immediate advantage.
Figure 5.1 shows an example. We start with an empty graph and then attempt to add

edges in increasing order of weight (ties are broken arbitrarily):

B − C, C − D, B − D, C − F, D − F, E − F, A − D, A − B, C − E, A − C.

The first two succeed, but the third, B − D, would produce a cycle if added. So we ignore it
and move along. The final result is a tree with cost 14, the minimum possible.

The correctness of Kruskal’s method follows from a certain cut property, which is general
enough to also justify a whole slew of other minimum spanning tree algorithms.

Figure 5.1 The minimum spanning tree found by Kruskal’s algorithm.

B

A 6 5

3

42 FD

C E

5 41 24

B

A

FD

C E

134

Chapter 5

Greedy algorithms

A game like chess can be won only by thinking ahead: a player who is focused entirely on
immediate advantage is easy to defeat. But in many other games, such as Scrabble, it is
possible to do quite well by simply making whichever move seems best at the moment and not
worrying too much about future consequences.
This sort of myopic behavior is easy and convenient, making it an attractive algorithmic

strategy. Greedy algorithms build up a solution piece by piece, always choosing the next
piece that offers the most obvious and immediate benefit. Although such an approach can be
disastrous for some computational tasks, there are many for which it is optimal. Our first
example is that of minimum spanning trees.

5.1 Minimum spanning trees
Suppose you are asked to network a collection of computers by linking selected pairs of them.
This translates into a graph problem in which nodes are computers, undirected edges are
potential links, and the goal is to pick enough of these edges that the nodes are connected.
But this is not all; each link also has a maintenance cost, reflected in that edge’s weight. What
is the cheapest possible network?

A

B

C

D

E

F

4

1

4

3 4
2 5

6

4

One immediate observation is that the optimal set of edges cannot contain a cycle, because
removing an edge from this cycle would reduce the cost without compromising connectivity:

Property 1 Removing a cycle edge cannot disconnect a graph.
So the solution must be connected and acyclic: undirected graphs of this kind are called

trees. The particular tree we want is the one with minimum total weight, known as the
minimum spanning tree. Here is its formal definition.

Input: An undirected graph G = (V,E); edge weights we.

133

25 / 67

Overview Kruskal Huffman Compression Minimal Spanning Tree Kruskal’s Algorithm

Kruskal’s algorithm

Start with the empty set of edges

Repeat: add lightest edge that doesn’t create a cycle

Adds edges B—C, C—D, C—F , A—D, E—F

Output: A tree T = (V,E �), with E� ⊆ E, that minimizes

weight(T) =
�

e∈E�

we.

In the preceding example, the minimum spanning tree has a cost of 16:

A

B

C

D

E

F

1

4

2 5
4

However, this is not the only optimal solution. Can you spot another?

5.1.1 A greedy approach
Kruskal’s minimum spanning tree algorithm starts with the empty graph and then selects
edges from E according to the following rule.

Repeatedly add the next lightest edge that doesn’t produce a cycle.

In other words, it constructs the tree edge by edge and, apart from taking care to avoid cycles,
simply picks whichever edge is cheapest at the moment. This is a greedy algorithm: every
decision it makes is the one with the most obvious immediate advantage.
Figure 5.1 shows an example. We start with an empty graph and then attempt to add

edges in increasing order of weight (ties are broken arbitrarily):

B − C, C − D, B − D, C − F, D − F, E − F, A − D, A − B, C − E, A − C.

The first two succeed, but the third, B − D, would produce a cycle if added. So we ignore it
and move along. The final result is a tree with cost 14, the minimum possible.

The correctness of Kruskal’s method follows from a certain cut property, which is general
enough to also justify a whole slew of other minimum spanning tree algorithms.

Figure 5.1 The minimum spanning tree found by Kruskal’s algorithm.

B

A 6 5

3

42 FD

C E

5 41 24

B

A

FD

C E

134
26 / 67

Overview Kruskal Huffman Compression Minimal Spanning Tree Kruskal’s Algorithm

Kruskal’s algorithm

MST (V , E,w)

X = ϕ

Q = priorityQueue(E) // from min to max weight
while Q is nonempty
e = deleteMin(Q)

if e connects two disconnected components in (V ,X) X = X ∪ {e}

27 / 67

Overview Kruskal Huffman Compression Minimal Spanning Tree Kruskal’s Algorithm

Kruskal’s: Correctness (by induction)

Induction Hypothesis: The first i edges selected by Kruskal’s are included in some MST T

Base case: trivial — the empty set of edges is always in any MST.

Induction step: Show that i+1th edge chosen by Kruskal’s is in the MST T
Proof: Let e = (v,w) be the edge chosen at i + 1th step of Kruskal’s.

Case 1: e ∈ T : The induction step is done.

Case 2: e ̸∈ T : T is a spanning tree: must include a unique path from v to w

At least one edge e′ on this path is not in X , the set of edges chosen in the first i steps by
Kruskal’s. (Otherwise, v and w will be connected in X , so Kruskal’s won’t chose e.)
Since neither e nor e′ are in X , and Kruskal’s chose e, w(e′) ≥ w(e).
Replace e′ by e in T to get another spanning tree T ′. Either w(T ′) < w(T), a contradiction
to the assumption T is minimal; or w(T ′) = w(T), and we have another MST T ′

consistent with X ∪ {e}. In both cases, we have completed the induction step.

28 / 67

Overview Kruskal Huffman Compression Minimal Spanning Tree Kruskal’s Algorithm

Kruskal’s: Correctness (by induction)

Induction Hypothesis: The first i edges selected by Kruskal’s are included in some MST T

Base case: trivial — the empty set of edges is always in any MST.

Induction step: Show that i+1th edge chosen by Kruskal’s is in the MST T
Proof: Let e = (v,w) be the edge chosen at i + 1th step of Kruskal’s.

Case 1: e ∈ T : The induction step is done.

Case 2: e ̸∈ T : T is a spanning tree: must include a unique path from v to w

At least one edge e′ on this path is not in X , the set of edges chosen in the first i steps by
Kruskal’s. (Otherwise, v and w will be connected in X , so Kruskal’s won’t chose e.)
Since neither e nor e′ are in X , and Kruskal’s chose e, w(e′) ≥ w(e).
Replace e′ by e in T to get another spanning tree T ′. Either w(T ′) < w(T), a contradiction
to the assumption T is minimal; or w(T ′) = w(T), and we have another MST T ′

consistent with X ∪ {e}. In both cases, we have completed the induction step.

29 / 67

Overview Kruskal Huffman Compression Minimal Spanning Tree Kruskal’s Algorithm

Kruskal’s: Correctness (by induction)

Induction Hypothesis: The first i edges selected by Kruskal’s are included in some MST T

Base case: trivial — the empty set of edges is always in any MST.

Induction step: Show that i+1th edge chosen by Kruskal’s is in the MST T
Proof: Let e = (v,w) be the edge chosen at i + 1th step of Kruskal’s.

Case 1: e ∈ T : The induction step is done.

Case 2: e ̸∈ T : T is a spanning tree: must include a unique path from v to w

At least one edge e′ on this path is not in X , the set of edges chosen in the first i steps by
Kruskal’s. (Otherwise, v and w will be connected in X , so Kruskal’s won’t chose e.)
Since neither e nor e′ are in X , and Kruskal’s chose e, w(e′) ≥ w(e).
Replace e′ by e in T to get another spanning tree T ′. Either w(T ′) < w(T), a contradiction
to the assumption T is minimal; or w(T ′) = w(T), and we have another MST T ′

consistent with X ∪ {e}. In both cases, we have completed the induction step.

30 / 67

Overview Kruskal Huffman Compression Minimal Spanning Tree Kruskal’s Algorithm

Kruskal’s: Correctness (by induction)

Induction Hypothesis: The first i edges selected by Kruskal’s are included in some MST T

Base case: trivial — the empty set of edges is always in any MST.

Induction step: Show that i+1th edge chosen by Kruskal’s is in the MST T
Proof: Let e = (v,w) be the edge chosen at i + 1th step of Kruskal’s.

Case 1: e ∈ T : The induction step is done.

Case 2: e ̸∈ T : T is a spanning tree: must include a unique path from v to w

At least one edge e′ on this path is not in X , the set of edges chosen in the first i steps by
Kruskal’s. (Otherwise, v and w will be connected in X , so Kruskal’s won’t chose e.)
Since neither e nor e′ are in X , and Kruskal’s chose e, w(e′) ≥ w(e).
Replace e′ by e in T to get another spanning tree T ′. Either w(T ′) < w(T), a contradiction
to the assumption T is minimal; or w(T ′) = w(T), and we have another MST T ′

consistent with X ∪ {e}. In both cases, we have completed the induction step.

31 / 67

Overview Kruskal Huffman Compression Minimal Spanning Tree Kruskal’s Algorithm

Kruskal’s: Correctness (by induction)

Induction Hypothesis: The first i edges selected by Kruskal’s are included in some MST T

Base case: trivial — the empty set of edges is always in any MST.

Induction step: Show that i+1th edge chosen by Kruskal’s is in the MST T
Proof: Let e = (v,w) be the edge chosen at i + 1th step of Kruskal’s.

Case 1: e ∈ T : The induction step is done.

Case 2: e ̸∈ T : T is a spanning tree: must include a unique path from v to w

At least one edge e′ on this path is not in X , the set of edges chosen in the first i steps by
Kruskal’s. (Otherwise, v and w will be connected in X , so Kruskal’s won’t chose e.)

Since neither e nor e′ are in X , and Kruskal’s chose e, w(e′) ≥ w(e).
Replace e′ by e in T to get another spanning tree T ′. Either w(T ′) < w(T), a contradiction
to the assumption T is minimal; or w(T ′) = w(T), and we have another MST T ′

consistent with X ∪ {e}. In both cases, we have completed the induction step.

32 / 67

Overview Kruskal Huffman Compression Minimal Spanning Tree Kruskal’s Algorithm

Kruskal’s: Correctness (by induction)

Induction Hypothesis: The first i edges selected by Kruskal’s are included in some MST T

Base case: trivial — the empty set of edges is always in any MST.

Induction step: Show that i+1th edge chosen by Kruskal’s is in the MST T
Proof: Let e = (v,w) be the edge chosen at i + 1th step of Kruskal’s.

Case 1: e ∈ T : The induction step is done.

Case 2: e ̸∈ T : T is a spanning tree: must include a unique path from v to w

At least one edge e′ on this path is not in X , the set of edges chosen in the first i steps by
Kruskal’s. (Otherwise, v and w will be connected in X , so Kruskal’s won’t chose e.)
Since neither e nor e′ are in X , and Kruskal’s chose e, w(e′) ≥ w(e).

Replace e′ by e in T to get another spanning tree T ′. Either w(T ′) < w(T), a contradiction
to the assumption T is minimal; or w(T ′) = w(T), and we have another MST T ′

consistent with X ∪ {e}. In both cases, we have completed the induction step.

33 / 67

Overview Kruskal Huffman Compression Minimal Spanning Tree Kruskal’s Algorithm

Kruskal’s: Correctness (by induction)

Induction Hypothesis: The first i edges selected by Kruskal’s are included in some MST T

Base case: trivial — the empty set of edges is always in any MST.

Induction step: Show that i+1th edge chosen by Kruskal’s is in the MST T
Proof: Let e = (v,w) be the edge chosen at i + 1th step of Kruskal’s.

Case 1: e ∈ T : The induction step is done.

Case 2: e ̸∈ T : T is a spanning tree: must include a unique path from v to w

At least one edge e′ on this path is not in X , the set of edges chosen in the first i steps by
Kruskal’s. (Otherwise, v and w will be connected in X , so Kruskal’s won’t chose e.)
Since neither e nor e′ are in X , and Kruskal’s chose e, w(e′) ≥ w(e).
Replace e′ by e in T to get another spanning tree T ′. Either w(T ′) < w(T), a contradiction
to the assumption T is minimal; or w(T ′) = w(T), and we have another MST T ′

consistent with X ∪ {e}. In both cases, we have completed the induction step.

34 / 67

Overview Kruskal Huffman Compression Minimal Spanning Tree Kruskal’s Algorithm

Kruskal’s: Runtime complexity

MST (V , E,w)

X = ϕ

Q = priorityQueue(E,w) // from min to max weight
while Q is nonempty
e = deleteMin(Q)

if e connects two disconnected components in (V ,X) X = X ∪ {e}

Priority queue: O(log |E|) = O(logV) per operation

Connectivity test: O(logV) per check using a disjoint set data structure

Thus, for |E| iterations, we have a runtime of O(|E| log |V |)

35 / 67

Overview Kruskal Huffman Compression Minimal Spanning Tree Kruskal’s Algorithm

MST: Applications

Network design: Communication networks, transportation networks, electrical grid,
oil/water pipelines, ...

Clustering: Application of minimum spanning forest (stop when |X | = |V | − k to get k
clusters)

Broadcasting: Spanning tree protocol in Ethernets

36 / 67

Overview Kruskal Huffman Compression

Information Theory and Coding

Information content
For an event e that occurs with probability p, its information content is given by
I(e) = − log p

“surprise factor” — low probability event conveys more information; an event that is
almost always likely (p ≈ 1) conveys no information.

Information content adds up: for two events e1 and e2, their combined information
content is −(log p1 + log p2)

37 / 67

Overview Kruskal Huffman Compression

Information Theory and Coding

Information content
For an event e that occurs with probability p, its information content is given by
I(e) = − log p

“surprise factor” — low probability event conveys more information; an event that is
almost always likely (p ≈ 1) conveys no information.

Information content adds up: for two events e1 and e2, their combined information
content is −(log p1 + log p2)

38 / 67

Overview Kruskal Huffman Compression

Information theory: Entropy

Information entropy

For a discrete random variable X that can take a value xi with probability pi , its entropy
is defined as the expectation (“weighted average”) over the information content of xi :

H(X) = E[I(X)] = −
n∑

i=1

pi log pi

Entropy is a measure of uncertainty

Plays a fundamental role in many areas, including coding theory and machine
learning.

39 / 67

Overview Kruskal Huffman Compression

Information theory: Entropy

Information entropy

For a discrete random variable X that can take a value xi with probability pi , its entropy
is defined as the expectation (“weighted average”) over the information content of xi :

H(X) = E[I(X)] = −
n∑

i=1

pi log pi

Entropy is a measure of uncertainty

Plays a fundamental role in many areas, including coding theory and machine
learning.

40 / 67

Overview Kruskal Huffman Compression

Optimal code length

Shannon’s source coding theorem

A random variable X denoting chars in an alphabet Σ = {x1, . . . , xn}

cannot be encoded in fewer than H(X) bits.
can be encoded using at most H(X) + 1 bits

The first part of this theorem sets a lower bound, regardless of how clever the encoding is.

Surprisingly simple proof for such a fundamental theorem! (See Wikipedia.)

Huffman coding: an algorithm that achieves this bound

41 / 67

Overview Kruskal Huffman Compression

Optimal code length

Shannon’s source coding theorem

A random variable X denoting chars in an alphabet Σ = {x1, . . . , xn}

cannot be encoded in fewer than H(X) bits.
can be encoded using at most H(X) + 1 bits

The first part of this theorem sets a lower bound, regardless of how clever the encoding is.

Surprisingly simple proof for such a fundamental theorem! (See Wikipedia.)

Huffman coding: an algorithm that achieves this bound

42 / 67

Overview Kruskal Huffman Compression

Optimal code length

Shannon’s source coding theorem

A random variable X denoting chars in an alphabet Σ = {x1, . . . , xn}

cannot be encoded in fewer than H(X) bits.
can be encoded using at most H(X) + 1 bits

The first part of this theorem sets a lower bound, regardless of how clever the encoding is.

Surprisingly simple proof for such a fundamental theorem! (See Wikipedia.)

Huffman coding: an algorithm that achieves this bound

43 / 67

Overview Kruskal Huffman Compression

Optimal code length

Shannon’s source coding theorem

A random variable X denoting chars in an alphabet Σ = {x1, . . . , xn}

cannot be encoded in fewer than H(X) bits.
can be encoded using at most H(X) + 1 bits

The first part of this theorem sets a lower bound, regardless of how clever the encoding is.

Surprisingly simple proof for such a fundamental theorem! (See Wikipedia.)

Huffman coding: an algorithm that achieves this bound

44 / 67

Overview Kruskal Huffman Compression

Variable-length encoding

Let Σ = {A,B,C,D} with probabilities 0.55, 0.02, 0.15, 0.28.

If we use a fixed-length code, each character will use 2-bits.

Alternatively, use a variable length code

Let us use as many bits as the information content of a character

A uses 1 bit, B uses 6 bits, C uses 3 bits, and D uses 2 bits.

You get an average saving of 15%

0.55 ∗ 1+ 0.02 ∗ 6+ 0.15 ∗ 3+ 0.28 ∗ 2 = 1.68 bits

Lower bound (entropy)

−(.5 log2 .5+ .02 log2 .02+ .14 log2 .14+ .27 log2 .27) = 1.51 bits

45 / 67

Overview Kruskal Huffman Compression

Variable-length encoding

Let Σ = {A,B,C,D} with probabilities 0.55, 0.02, 0.15, 0.28.

If we use a fixed-length code, each character will use 2-bits.

Alternatively, use a variable length code

Let us use as many bits as the information content of a character

A uses 1 bit, B uses 6 bits, C uses 3 bits, and D uses 2 bits.

You get an average saving of 15%

0.55 ∗ 1+ 0.02 ∗ 6+ 0.15 ∗ 3+ 0.28 ∗ 2 = 1.68 bits

Lower bound (entropy)

−(.5 log2 .5+ .02 log2 .02+ .14 log2 .14+ .27 log2 .27) = 1.51 bits

46 / 67

Overview Kruskal Huffman Compression

Variable-length encoding

Let Σ = {A,B,C,D} with probabilities 0.55, 0.02, 0.15, 0.28.

If we use a fixed-length code, each character will use 2-bits.

Alternatively, use a variable length code

Let us use as many bits as the information content of a character

A uses 1 bit, B uses 6 bits, C uses 3 bits, and D uses 2 bits.

You get an average saving of 15%

0.55 ∗ 1+ 0.02 ∗ 6+ 0.15 ∗ 3+ 0.28 ∗ 2 = 1.68 bits

Lower bound (entropy)

−(.5 log2 .5+ .02 log2 .02+ .14 log2 .14+ .27 log2 .27) = 1.51 bits

47 / 67

Overview Kruskal Huffman Compression

Variable-length encoding
Let Σ = {A,B,C,D} with probabilities 0.55, 0.02, 0.15, 0.28.

Let us try fixing the codes, not just their
lengths:
A = 0,D = 11,C = 101,B = 100.

Note: enough to assign 3 bits to B, not 6. So,
average coding size reduces to 1.62.

Figure 5.10 A prefix-free encoding. Frequencies are shown in square brackets.

Symbol Codeword
A 0
B 100
C 101
D 11

0

A [70]

1

[60]

C [20]B [3]

D [37]
[23]

In general, how do we find the optimal coding tree, given the frequencies f1, f2, . . . , fn of
n symbols? To make the problem precise, we want a tree whose leaves each correspond to a
symbol and which minimizes the overall length of the encoding,

cost of tree =
n�

i=1

fi · (depth of ith symbol in tree)

(the number of bits required for a symbol is exactly its depth in the tree).
There is another way to write this cost function that is very helpful. Although we are only

given frequencies for the leaves, we can define the frequency of any internal node to be the
sum of the frequencies of its descendant leaves; this is, after all, the number of times the
internal node is visited during encoding or decoding. During the encoding process, each time
we move down the tree, one bit gets output for every nonroot node through which we pass. So
the total cost—the total number of bits which are output—can also be expressed thus:

The cost of a tree is the sum of the frequencies of all leaves and internal nodes,
except the root.

The first formulation of the cost function tells us that the two symbols with the smallest
frequencies must be at the bottom of the optimal tree, as children of the lowest internal node
(this internal node has two children since the tree is full). Otherwise, swapping these two
symbols with whatever is lowest in the tree would improve the encoding.
This suggests that we start constructing the tree greedily: find the two symbols with the

smallest frequencies, say i and j, and make them children of a new node, which then has
frequency fi + fj. To keep the notation simple, let’s just assume these are f1 and f2. By the
second formulation of the cost function, any tree in which f1 and f2 are sibling-leaves has cost
f1 + f2 plus the cost for a tree with n − 1 leaves of frequencies (f1 + f2), f3, f4, . . . , fn:

147

Prefix encoding

No code is a prefix of another.

Necessary property to enable decoding.

Every such encoding can be represented using a full binary tree (either 0 or 2
children for every node)

48 / 67

Overview Kruskal Huffman Compression

Variable-length encoding
Let Σ = {A,B,C,D} with probabilities 0.55, 0.02, 0.15, 0.28.

Let us try fixing the codes, not just their
lengths:
A = 0,D = 11,C = 101,B = 100.

Note: enough to assign 3 bits to B, not 6. So,
average coding size reduces to 1.62.

Figure 5.10 A prefix-free encoding. Frequencies are shown in square brackets.

Symbol Codeword
A 0
B 100
C 101
D 11

0

A [70]

1

[60]

C [20]B [3]

D [37]
[23]

In general, how do we find the optimal coding tree, given the frequencies f1, f2, . . . , fn of
n symbols? To make the problem precise, we want a tree whose leaves each correspond to a
symbol and which minimizes the overall length of the encoding,

cost of tree =
n�

i=1

fi · (depth of ith symbol in tree)

(the number of bits required for a symbol is exactly its depth in the tree).
There is another way to write this cost function that is very helpful. Although we are only

given frequencies for the leaves, we can define the frequency of any internal node to be the
sum of the frequencies of its descendant leaves; this is, after all, the number of times the
internal node is visited during encoding or decoding. During the encoding process, each time
we move down the tree, one bit gets output for every nonroot node through which we pass. So
the total cost—the total number of bits which are output—can also be expressed thus:

The cost of a tree is the sum of the frequencies of all leaves and internal nodes,
except the root.

The first formulation of the cost function tells us that the two symbols with the smallest
frequencies must be at the bottom of the optimal tree, as children of the lowest internal node
(this internal node has two children since the tree is full). Otherwise, swapping these two
symbols with whatever is lowest in the tree would improve the encoding.
This suggests that we start constructing the tree greedily: find the two symbols with the

smallest frequencies, say i and j, and make them children of a new node, which then has
frequency fi + fj. To keep the notation simple, let’s just assume these are f1 and f2. By the
second formulation of the cost function, any tree in which f1 and f2 are sibling-leaves has cost
f1 + f2 plus the cost for a tree with n − 1 leaves of frequencies (f1 + f2), f3, f4, . . . , fn:

147

Prefix encoding

No code is a prefix of another.

Necessary property to enable decoding.

Every such encoding can be represented using a full binary tree (either 0 or 2
children for every node)

49 / 67

Overview Kruskal Huffman Compression

Huffman encoding

Build the prefix tree bottom-up

Start with a node whose children are codewords
c1 and c2 that occur least often

Remove c1 and c2 from alphabet, replace with c′

that occurs with frequency f1 + f2

Recurse f1 f2

f3f5 f4

f1 + f2

The latter problem is just a smaller version of the one we started with. So we pull f1 and f2

off the list of frequencies, insert (f1 + f2), and loop. The resulting algorithm can be described
in terms of priority queue operations (as defined on page 114) and takes O(n log n) time if a
binary heap (Section 4.5.2) is used.

procedure Huffman(f)
Input: An array f [1 · · ·n] of frequencies
Output: An encoding tree with n leaves

let H be a priority queue of integers, ordered by f
for i = 1 to n: insert(H, i)
for k = n + 1 to 2n − 1:

i = deletemin(H), j = deletemin(H)
create a node numbered k with children i, j
f [k] = f [i] + f [j]
insert(H,k)

Returning to our toy example: can you tell if the tree of Figure 5.10 is optimal?

148

How to make this algorithm fast?

What is its complexity?

50 / 67

Overview Kruskal Huffman Compression

Huffman encoding

Build the prefix tree bottom-up

Start with a node whose children are codewords
c1 and c2 that occur least often

Remove c1 and c2 from alphabet, replace with c′

that occurs with frequency f1 + f2

Recurse f1 f2

f3f5 f4

f1 + f2

The latter problem is just a smaller version of the one we started with. So we pull f1 and f2

off the list of frequencies, insert (f1 + f2), and loop. The resulting algorithm can be described
in terms of priority queue operations (as defined on page 114) and takes O(n log n) time if a
binary heap (Section 4.5.2) is used.

procedure Huffman(f)
Input: An array f [1 · · ·n] of frequencies
Output: An encoding tree with n leaves

let H be a priority queue of integers, ordered by f
for i = 1 to n: insert(H, i)
for k = n + 1 to 2n − 1:

i = deletemin(H), j = deletemin(H)
create a node numbered k with children i, j
f [k] = f [i] + f [j]
insert(H,k)

Returning to our toy example: can you tell if the tree of Figure 5.10 is optimal?

148

How to make this algorithm fast?

What is its complexity?

51 / 67

Overview Kruskal Huffman Compression

Huffman encoding: Example

Algorithms Lecture 7: Greedy Algorithms [Fa’13]

After 19 merges, all 20 characters have been merged together. The record of merges gives us our code
tree. The algorithm makes a number of arbitrary choices; as a result, there are actually several different
Huffman codes. One such code is shown below. For example, the code for A is 110000, and the code
for S is 00.

���

�� ���

�� �� ��

��

��

� �

�

�� ��

�� �� ��

�

�

��

�
��

�
��

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
��

�
�

�
�

A Huffman code for Lee Sallows’ self-descriptive sentence; the numbers are frequencies for merged characters

If we use this code, the encoded message starts like this:

1001

T

0100

H

1101

I

00

S

00

S

111

E

011

N

1001

T

111

E

011

N

110001

C

111

E

110001

C

10001

O

011

N

1001

T

110000

A

1101

I
· · ·

Here is the list of costs for encoding each character in the example message, along with that character’s
contribution to the total length of the encoded message:

char. A C D E F G H I L N O R S T U V W X Y Z

freq. 3 3 2 26 5 3 8 13 2 16 9 6 27 22 2 5 8 4 5 1
depth 6 6 7 3 5 6 4 4 7 3 4 4 2 4 7 5 4 6 5 7
total 18 18 14 78 25 18 32 52 14 48 36 24 54 88 14 25 32 24 25 7

Altogether, the encoded message is 646 bits long. Different Huffman codes would assign different codes,
possibly with different lengths, to various characters, but the overall length of the encoded message is
the same for any Huffman code: 646 bits.

Given the simple structure of Huffman’s algorithm, it’s rather surprising that it produces an optimal
prefix-free binary code. Encoding Lee Sallows’ sentence using any prefix-free code requires at least 646
bits! Fortunately, the recursive structure makes this claim easy to prove using an exchange argument,
similar to our earlier optimality proofs. We start by proving that the algorithm’s very first choice is
correct.

Lemma 5. Let x and y be the two least frequent characters (breaking ties between equally frequent
characters arbitrarily). There is an optimal code tree in which x and y are siblings.

Proof: I’ll actually prove a stronger statement: There is an optimal code in which x and y are siblings
and have the largest depth of any leaf.

6

This sentence contains three a’s, three c’s, two d’s, twenty-six e’s, five f’s, three g’s, eight h’s, thirteen i’s, two l’s, sixteen n’s, nine
o’s, six r’s, twenty-seven s’s, twenty-two t’s, two u’s, five v’s, eight w’s, four x’s, five y’s, and only one z. Images from Jeff Erickson’s

“Algorithms”

Uses about 650 bits, vs 850 for fixed-length (5-bit) code.
52 / 67

Overview Kruskal Huffman Compression

Huffman encoding: Optimality

Crux of the proof: Greedy choice property

Familiar exchange argument

Suppose the optimal prefix tree does not use longest path for two least frequent

codewords c1 and c2
Show that by exchanging c1 with the codeword using the longest path in the optimal tree,

you can reduce the cost of the “optimal code” — a contradiction

Same argument holds for c2

53 / 67

Overview Kruskal Huffman Compression

Huffman encoding: Optimality

Crux of the proof: Greedy choice property

Familiar exchange argument

Suppose the optimal prefix tree does not use longest path for two least frequent

codewords c1 and c2
Show that by exchanging c1 with the codeword using the longest path in the optimal tree,

you can reduce the cost of the “optimal code” — a contradiction

Same argument holds for c2

54 / 67

Overview Kruskal Huffman Compression

Huffman encoding: Optimality

Crux of the proof: Greedy choice property

Familiar exchange argument

Suppose the optimal prefix tree does not use longest path for two least frequent

codewords c1 and c2
Show that by exchanging c1 with the codeword using the longest path in the optimal tree,

you can reduce the cost of the “optimal code” — a contradiction

Same argument holds for c2

55 / 67

Overview Kruskal Huffman Compression

Huffman Coding: Applications

Document compression

Signal encoding

As part of other compression algorithms (MP3, gzip, PKZIP, JPEG, ...)

56 / 67

Overview Kruskal Huffman Compression

Lossless Compression

How much compression can we get using Huffman?

It depends on what we mean by a codeword!
If they are English characters, effect is relatively small
if they are English words, or better, sentences, then much higher compression is possible

To use words/sentences as codewords, we probably need to construct
document-specific codebook

Larger alphabet size implies larger codebooks!

Need to consider the combined size of codebook plus the encoded document

Can the codebook be constructed on-the-fly?

Lempel-Ziv compression algorithms (gzip)

57 / 67

Overview Kruskal Huffman Compression

Lossless Compression

How much compression can we get using Huffman?
It depends on what we mean by a codeword!

If they are English characters, effect is relatively small
if they are English words, or better, sentences, then much higher compression is possible

To use words/sentences as codewords, we probably need to construct
document-specific codebook

Larger alphabet size implies larger codebooks!

Need to consider the combined size of codebook plus the encoded document

Can the codebook be constructed on-the-fly?

Lempel-Ziv compression algorithms (gzip)

58 / 67

Overview Kruskal Huffman Compression

Lossless Compression

How much compression can we get using Huffman?
It depends on what we mean by a codeword!
If they are English characters, effect is relatively small
if they are English words, or better, sentences, then much higher compression is possible

To use words/sentences as codewords, we probably need to construct
document-specific codebook

Larger alphabet size implies larger codebooks!

Need to consider the combined size of codebook plus the encoded document

Can the codebook be constructed on-the-fly?

Lempel-Ziv compression algorithms (gzip)

59 / 67

Overview Kruskal Huffman Compression

Lossless Compression

How much compression can we get using Huffman?
It depends on what we mean by a codeword!
If they are English characters, effect is relatively small
if they are English words, or better, sentences, then much higher compression is possible

To use words/sentences as codewords, we probably need to construct
document-specific codebook

Larger alphabet size implies larger codebooks!

Need to consider the combined size of codebook plus the encoded document

Can the codebook be constructed on-the-fly?

Lempel-Ziv compression algorithms (gzip)

60 / 67

Overview Kruskal Huffman Compression

Lossless Compression

How much compression can we get using Huffman?
It depends on what we mean by a codeword!
If they are English characters, effect is relatively small
if they are English words, or better, sentences, then much higher compression is possible

To use words/sentences as codewords, we probably need to construct
document-specific codebook

Larger alphabet size implies larger codebooks!

Need to consider the combined size of codebook plus the encoded document

Can the codebook be constructed on-the-fly?

Lempel-Ziv compression algorithms (gzip)

61 / 67

Overview Kruskal Huffman Compression

gzip Algorithm [Lempel-Ziv 1977]

Key Idea: Use precedingW -bytes as the codebook (“sliding window”, up to 32KB in
gzip)

Encoding:
Strings previously seen in the window are replaced by the pair (offset, length)
Need to find the longest match for the current string

Matches should have a minimum length, or else they will be emitted as literals

Encode offset and length using Huffman encoding

Decoding: Interpret (offset, length) using the same window ofW -bytes of preceding
text. (Much faster than encoding.)

62 / 67

Overview Kruskal Huffman Compression

gzip Algorithm [Lempel-Ziv 1977]

Key Idea: Use precedingW -bytes as the codebook (“sliding window”, up to 32KB in
gzip)

Encoding:
Strings previously seen in the window are replaced by the pair (offset, length)
Need to find the longest match for the current string

Matches should have a minimum length, or else they will be emitted as literals

Encode offset and length using Huffman encoding

Decoding: Interpret (offset, length) using the same window ofW -bytes of preceding
text. (Much faster than encoding.)

63 / 67

Overview Kruskal Huffman Compression

gzip Algorithm [Lempel-Ziv 1977]

Key Idea: Use precedingW -bytes as the codebook (“sliding window”, up to 32KB in
gzip)

Encoding:
Strings previously seen in the window are replaced by the pair (offset, length)
Need to find the longest match for the current string

Matches should have a minimum length, or else they will be emitted as literals

Encode offset and length using Huffman encoding

Decoding: Interpret (offset, length) using the same window ofW -bytes of preceding
text. (Much faster than encoding.)

64 / 67

Overview Kruskal Huffman Compression

Greedy Algorithms: Summary

One of the strategies used to solve optimization problems

Frequently, locally optimal choices are NOT globally optimal, so use with a great
deal of care.

Always need to prove optimality. Proof typically relies on greedy choice property, usually

established by an “exchange” argument, and optimal substructure.

Examples

MST and clustering

Shortest path

Huffman encoding

65 / 67

Overview Kruskal Huffman Compression

Greedy Algorithms: Summary

One of the strategies used to solve optimization problems

Frequently, locally optimal choices are NOT globally optimal, so use with a great
deal of care.

Always need to prove optimality. Proof typically relies on greedy choice property, usually

established by an “exchange” argument, and optimal substructure.

Examples

MST and clustering

Shortest path

Huffman encoding

66 / 67

Overview Kruskal Huffman Compression

Greedy Algorithms: Summary

One of the strategies used to solve optimization problems

Frequently, locally optimal choices are NOT globally optimal, so use with a great
deal of care.

Always need to prove optimality. Proof typically relies on greedy choice property, usually

established by an “exchange” argument, and optimal substructure.

Examples

MST and clustering

Shortest path

Huffman encoding

67 / 67

	Overview
	Kruskal
	Minimal Spanning Tree
	Kruskal's Algorithm

	Huffman
	Compression

