CSE 548: Algorithms

NP and Complexity Classes

R. Sekar

Search and Optimization Problems

- Many problems of our interest are search problems with exponentially (or even infinitely) many solutions
 - Shortest of the paths between two vertices
 - Spanning tree with minimal cost
 - Combination of variable values that minimize an objective
- We should be surprised we find efficient (i.e., polynomial-time) solutions to these problems
 - It seems like these should be the exceptions rather than the norm!
- What do we do when we hit upon other search problems?

Intro *P* and *NP* Hard problems

Hard Problems: Where you find yourself ...

I can't find an efficient algorithm, I guess I'm just too dumb.

Images from "Computers and Intractability" by Garey and Johnson

Search and Optimization Problems

- What do we do when we hit upon hard search problems?
 - Can we prove they can't be solved efficiently?

Hard Problems: Where you would like to be ...

I can't find an efficient algorithm, because no such algorithm is possible.

Search and Optimization Problems

- Unfortunately, it is very hard to prove that efficient algorithms are impossible
- Second best alternative:
 - Show that the problem is as hard as many other problems that have been worked on by a host of brilliant scientists over a very long time
- Much of complexity theory is concerned with categorizing hard problems into such *equivalence classes*

P, NP, Co-NP, NP-hard and NP-complete

Nondeterminism and Search Problems

- Nondeterminism is an oft-used abstraction in language theory
 - Non-deterministic FSA
 - Non-deterministic PDA
- So, why not non-deterministic Turing machines?
 - Acceptance criteria is analogous to NFA and NPDA
 - if there is a sequence of transitions to an accepting state, an NDTM will take that path.
- What does nondeterminism, a theoretical construct, mean in practice?
 - You can think of it as a boundless potential to search for and identify the correct path that leads to a solution
 - So, it does not change the class of problems that can be solved, just the time/space needed to solve.

Class NP: Non-deterministic Polynomial Time

How they operate:

- Guess a solution
- verify correctness in polynomial time

Class NP: Non-deterministic Polynomial Time

How they operate:

- Guess a solution
- verify correctness in polynomial time

Polynomial time verifiability is the key property of NP.

- This is how you build a path from *P* to *NP*.
- Ideal formulation for search problems, where correct solutions are hard to find but easy to recognize.

Class NP: Non-deterministic Polynomial Time

How they operate:

- Guess a solution
- verify correctness in polynomial time

Polynomial time verifiability is the key property of NP.

- This is how you build a path from *P* to *NP*.
- Ideal formulation for search problems, where correct solutions are hard to find but easy to recognize.

Example: Boolean formula satisfiability (SAT)

- Given a boolean formula in CNF, find an assignment of {true, false} to variables that makes it true.
 - Why not DNF?

• Only Decision problems:

- Problems with an "yes" or "no" answer
- Optimization problems are generally not in NP
 - But we can often find optimal solutions using "binary search"

¹Whether $UNSAT \in NP$ is unknown!

• Only Decision problems:

- Problems with an "yes" or "no" answer
- Optimization problems are generally not in NP
 - But we can often find optimal solutions using "binary search"
- "No" answers are usually not verifiable in P-time
 - So, complement of *NP* problems are often not *NP*.
 - UNSAT show that a CNF formula is false for all truth assignments¹

¹Whether $UNSAT \in NP$ is unknown!

• Only Decision problems:

- Problems with an "yes" or "no" answer
- Optimization problems are generally not in NP
 - But we can often find optimal solutions using "binary search"
- "No" answers are usually not verifiable in P-time
 - So, complement of *NP* problems are often not *NP*.
 - UNSAT show that a CNF formula is false for all truth assignments¹
- Key point: You cannot negate nondeterministic automata.
 - So, we are unable to convert an NDTM for SAT to solve UNSAT in NP-time.

¹Whether $UNSAT \in NP$ is unknown!

- Existentially quantified vs Universally quantified formulas
 - *NP* is good for $\exists \overline{x} P(\overline{x})$: guess a value for \overline{x} and check if $P(\overline{x})$ holds.
 - *NP* is not good for $\forall \overline{x} P(\overline{x})$:
 - Guessing does not seem to help if you need to check all values of \overline{x} .

- Existentially quantified vs Universally quantified formulas
 - *NP* is good for $\exists \overline{x} P(\overline{x})$: guess a value for \overline{x} and check if $P(\overline{x})$ holds.
 - *NP* is not good for $\forall \overline{x} \ P(\overline{x})$:
 - Guessing does not seem to help if you need to check all values of \overline{x} .
- Negation of existential formula yields a universal formula.
 - No surprise that complement of NP problems are typically not in NP.
 - UNSAT: $\forall \overline{x} \neg P(\overline{x})$ where P is in CNF
 - *VALID*: $\forall \overline{x} P(\overline{x})$, where *P* is in DNF

- Existentially quantified vs Universally quantified formulas
 - *NP* is good for $\exists \overline{x} P(\overline{x})$: guess a value for \overline{x} and check if $P(\overline{x})$ holds.
 - *NP* is not good for $\forall \overline{x} \ P(\overline{x})$:
 - Guessing does not seem to help if you need to check all values of \overline{x} .
- Negation of existential formula yields a universal formula.
 - No surprise that complement of *NP* problems are typically not in *NP*.
 - UNSAT: $\forall \overline{x} \neg P(\overline{x})$ where P is in CNF
 - *VALID*: $\forall \overline{x} P(\overline{x})$, where *P* is in DNF
- NP seems to be a good way to separate hard problems from even harder ones!

Co-NP: Problems whose complement is in NP

 Decision problems that have a polynomially checkable proof when the answer is "no"

What we *think* the world looks like.

Co-NP: Problems whose complement is in NP

• Decision problems that have a polynomially checkable proof when the answer is "no"

What we think the world looks like.

- Biggest open problem: Is *P* = *NP*?
 - Will also imply co-NP = P

• Often, problems that are in $NP \cap co-NP$ are in P

- Often, problems that are in $NP \cap co-NP$ are in P
- It requires considerable insight and/or structure in the problem to show that something is both *NP* and *co-NP*
 - This can often be turned into a *P*-time algorithm

- Often, problems that are in $NP \cap co-NP$ are in P
- It requires considerable insight and/or structure in the problem to show that something is both *NP* and *co-NP*
 - This can often be turned into a P-time algorithm
- Examples
 - Linear programming [1979]
 - Obviously in *NP*. To see why it is in *co-NP*, we can derive a lower bound by multiplying the constraints by a suitable (guessed) number and adding.

- Often, problems that are in $NP \cap co-NP$ are in P
- It requires considerable insight and/or structure in the problem to show that something is both *NP* and *co-NP*
 - This can often be turned into a *P*-time algorithm
- Examples
 - Linear programming [1979]
 - Obviously in *NP*. To see why it is in *co-NP*, we can derive a lower bound by multiplying the constraints by a suitable (guessed) number and adding.
 - Primality testing [2002]
 - Obviously in co-NP; See "primality certificate" for proof it is *NP*

- Often, problems that are in $NP \cap co-NP$ are in P
- It requires considerable insight and/or structure in the problem to show that something is both *NP* and *co-NP*
 - This can often be turned into a *P*-time algorithm
- Examples
 - Linear programming [1979]
 - Obviously in *NP*. To see why it is in *co-NP*, we can derive a lower bound by multiplying the constraints by a suitable (guessed) number and adding.
 - Primality testing [2002]
 - Obviously in co-NP; See "primality certificate" for proof it is *NP*
 - Integer factorization?

NP-hard and NP-complete

- A problem Π is *NP*-hard if the availability of a polynomial solution to Π will allow *NP*-problems to be solved in polynomial time.
 - Π is *NP*-hard \Leftrightarrow if Π can be solved in *P*-time, *P* = *NP*
- *NP*-complete = *NP*-hard \cap *NP*

- Show that a problem A could be transformed into problem B in polynomial time
 - Called a polynomial-time reduction of A to B
 - The crux of proofs involving NP-completeness

- Show that a problem A could be transformed into problem B in polynomial time
 - Called a polynomial-time reduction of A to B
 - The crux of proofs involving *NP*-completeness
- *Implication:* if *B* can be solved in *P*-time, we can solve *A* in *P*-time

- Show that a problem A could be transformed into problem B in polynomial time
 - Called a polynomial-time reduction of A to B
 - The crux of proofs involving NP-completeness
- *Implication:* if *B* can be solved in *P*-time, we can solve *A* in *P*-time
- *An NP-complete problem* is one to which any problem in *NP* can be reduced to.

- Show that a problem A could be transformed into problem B in polynomial time
 - Called a polynomial-time reduction of A to B
 - The crux of proofs involving NP-completeness
- *Implication:* if *B* can be solved in *P*-time, we can solve *A* in *P*-time
- *An NP-complete problem* is one to which any problem in *NP* can be reduced to.
- Never forget the direction: To prove a problem Π is *NP*-complete, need to show how all other *NP* problems can be solved using Π, not vice-versa!

• If a particular *NP*-problem *A* is given to you, then you can think of a way to reduce it to your problem *B*

- If a particular *NP*-problem *A* is given to you, then you can think of a way to reduce it to your problem *B*
- But how do you go about proving that *every NP* problem *X* can be reduced to *B*
 - You don't even know X indeed, the class *NP* is infinite!

- If a particular *NP*-problem *A* is given to you, then you can think of a way to reduce it to your problem *B*
- But how do you go about proving that *every NP* problem X can be reduced to B
 - You don't even know X indeed, the class *NP* is infinite!
- If you already knew an NP-complete problem, your task is easy!
 - Simply reduce this *NP*-complete problem to *B*, and by transitivity, you have a reduction of every X ∈ NP to B

- If a particular *NP*-problem *A* is given to you, then you can think of a way to reduce it to your problem *B*
- But how do you go about proving that *every NP* problem X can be reduced to B
 - You don't even know X indeed, the class *NP* is infinite!
- If you already knew an NP-complete problem, your task is easy!
 - Simply reduce this *NP*-complete problem to *B*, and by transitivity, you have a reduction of every *X* ∈ *NP* to *B*
- So, who will bell the cat?
 - Stephen Cook [1970] and Leonid Levin [1973] managed to do this!
 - Cook was denied reappointment/tenure in 1970 at Berkeley, but won the Turing award in 1982!

The first NP-complete problem: SAT

How do you show reducibility of arbitrary *NP*-problems to *SAT*?

The first NP-complete problem: SAT

How do you show reducibility of arbitrary *NP*-problems to *SAT*? You start from the definition, of course!

- The class NP is defined in terms of an NDTM
 - X is in NP if there is an NDTM T_X that solves X in polynomial time

The first NP-complete problem: SAT

How do you show reducibility of arbitrary *NP*-problems to *SAT*? You start from the definition, of course!

- The class NP is defined in terms of an NDTM
 - X is in NP if there is an NDTM T_X that solves X in polynomial time
- Use this NDTM as the basis of proof.
How do you show reducibility of arbitrary *NP*-problems to *SAT*? You start from the definition, of course!

- The class NP is defined in terms of an NDTM
 - X is in NP if there is an NDTM T_X that solves X in polynomial time
- Use this NDTM as the basis of proof.

Specifically, show that acceptance by an NDTM can be encoded in terms of a boolean formula

How do you show reducibility of arbitrary *NP*-problems to *SAT*? You start from the definition, of course!

- The class NP is defined in terms of an NDTM
 - X is in NP if there is an NDTM T_X that solves X in polynomial time
- Use this NDTM as the basis of proof.

Specifically, show that acceptance by an NDTM can be encoded in terms of a boolean formula

• Model *T_X* tape contents, tape heads, and finite state at each step as a vector of boolean variables

How do you show reducibility of arbitrary *NP*-problems to *SAT*? You start from the definition, of course!

- The class NP is defined in terms of an NDTM
 - X is in NP if there is an NDTM T_X that solves X in polynomial time
- Use this NDTM as the basis of proof.

Specifically, show that acceptance by an NDTM can be encoded in terms of a boolean formula

- Model *T_X* tape contents, tape heads, and finite state at each step as a vector of boolean variables
 - Need $(p(n))^2$ variables, where p(n) is the (polynomial) runtime of T_X

How do you show reducibility of arbitrary *NP*-problems to *SAT*? You start from the definition, of course!

- The class NP is defined in terms of an NDTM
 - X is in NP if there is an NDTM T_X that solves X in polynomial time
- Use this NDTM as the basis of proof.

Specifically, show that acceptance by an NDTM can be encoded in terms of a boolean formula

- Model *T_X* tape contents, tape heads, and finite state at each step as a vector of boolean variables
 - Need $(p(n))^2$ variables, where p(n) is the (polynomial) runtime of T_X
- Model each transition as a boolean formula

Thanks to Cook-Levin, you can say ...

I can't find an efficient algorithm, but neither can all these famous people.

Some Hard Decision Problems

Traveling Salesman Problem

Hamiltonian Cycle

- Simpler than TSP
 - Is there a cycle that passes through every vertex in the graph?
- Earliest reference, posed in the context of chess boards and knights ("Rudrata cycle")
- Longest path is another version of the same problem
 - When posed as a decision problem, becomes the same as Hamiltonian path problem

Balanced Cuts

Does there exist a way to partition vertices V in a graph into two sets S and T such that

- there are at most *b* edges between *S* and *T*, and
- $|S| \ge |T| \ge |V|/3$

Integer Linear Programming (ILP) and Zero-One Equations (ZOE)

ILP: Linear programing, but solutions are limited to integers

• Many problems are easy to solve over real numbers but much harder for integers.

Integer Linear Programming (ILP) and Zero-One Equations (ZOE)

ILP: Linear programing, but solutions are limited to integers

- Many problems are easy to solve over real numbers but much harder for integers.
- Examples:
 - Knapsack
 - solutions to equations such as $x^n + y^n = z^n$

Integer Linear Programming (ILP) and Zero-One Equations (ZOE)

ILP: Linear programing, but solutions are limited to integers

- Many problems are easy to solve over real numbers but much harder for integers.
- Examples:
 - Knapsack
 - solutions to equations such as $x^n + y^n = z^n$

ZOE: A special case of ILP, where the values are just 0 or 1.

• Find **x** such that Ax = 1 where **1** is a column matrix consisting of 1's.

3d-Matching

• Given triples of compatibilities between men, women and pets, find perfect, 3-way matches.

Independent set, vertex cover, and clique

Independent set: Does this graph contain a set of at least *k* vertices with no edge between them?

Independent set, vertex cover, and clique

- Independent set: Does this graph contain a set of at least *k* vertices with no edge between them?
- Vertex cover: Does this graph contain a set of at least *k* vertices that cover all edges?

Independent set, vertex cover, and clique

- Independent set: Does this graph contain a set of at least *k* vertices with no edge between them?
- Vertex cover: Does this graph contain a set of at least *k* vertices that cover all edges?
- Clique: Does this graph contain at least *k* vertices that are fully connected among themselves?

Easy Vs Hard Problems

Hard	Easy
3SAT	2SAT, HORN SAT
TSP	MST
Longest path	Shortest path
3d-matching	bipartite match
Independent set	Indep. set on trees
ILP	Linear programming
Hamiltonian cycle	Euler path,
	Knights tour
Balanced cut	Min-cut

NP-completeness: Polynomial-time Reductions

• Show that a known *NP*-complete problem *A* could be transformed into problem *B* in polynomial time

- *Implication:* if *B* can be solved in *P*-time, we can solve *A* in *P*-time
- Never forget the direction:
 - We are proving that *B* is *NP*-complete here.

NP-completeness Reductions

Reducing all of NP to SAT

- We already discussed this
 - Show how to reduce acceptance by an NDTM to the SAT problem.

Reducing all of NP to SAT

- We already discussed this
 - Show how to reduce acceptance by an NDTM to the SAT problem.
- Exercise: Show how to transform acceptance by an FSA into an instance of SAT

• 3*SAT*: A special case of *SAT* where each clause has \leq 3 literals

- 3*SAT*: A special case of *SAT* where each clause has \leq 3 literals
- Reduction involves transforming a disjunction with many literals into a CNF of disjunctions with \leq 3 literals per term

- 3*SAT*: A special case of *SAT* where each clause has \leq 3 literals
- Reduction involves transforming a disjunction with many literals into a CNF of disjunctions with \leq 3 literals per term
- The transformation below at most doubles the problem size.
- Key Idea: Introduce additional variables:
 - *Example:* $l_1 \vee l_2 \vee l_3 \vee l_4$ can be transformed into:

 $(l_1 \lor l_2 \lor y_1) \land (\overline{y_1} \lor l_3 \lor l_4)$

- 3*SAT*: A special case of *SAT* where each clause has \leq 3 literals
- Reduction involves transforming a disjunction with many literals into a CNF of disjunctions with \leq 3 literals per term
- The transformation below at most doubles the problem size.
- Key Idea: Introduce additional variables:
 - *Example:* $l_1 \lor l_2 \lor l_3 \lor l_4$ can be transformed into:

 $(l_1 \lor l_2 \lor y_1) \land (\overline{y_1} \lor l_3 \lor l_4)$

For this conjunction to be true, one of $\{l_1, ..., l_4\}$ must be true:

• So a solution to the transformed problem is a solution to the original – simply discard assignments for the new variables *y_i*.

Reducing 3SAT to Independent set

- Nontrivial reduction, as the problems are quite different in nature
- Idea: Model each of k clauses of 3SAT by a "triangle" in a graph

Reducing 3SAT to Independent set

- Nontrivial reduction, as the problems are quite different in nature
- Idea: Model each of *k* clauses of 3*SAT* by a "triangle" in a graph

- Independent set of size *k* must contain one literal from each clause
 - By setting that literal to *true*, we obtain a solution for 3SAT

Reducing 3SAT to Independent set

- Nontrivial reduction, as the problems are quite different in nature
- Idea: Model each of k clauses of 3SAT by a "triangle" in a graph

- Independent set of size k must contain one literal from each clause
 - By setting that literal to true, we obtain a solution for 3SAT
- *Key point:* Avoid conflicts, e.g., assigning *true* to both x and \overline{x}
 - ensure using edges between every variable and its complement

Reducing Independent set to Vertex Cover

- If S is an independent set then V S is a vertex cover
 - Consider any edge *e* in the graph
 - Case 1: Both ends of e are in V S
 - *Case 2:* At least one end of *e* is *S*. The other end of *e* cannot be in *S* or else *S* won't be independent.
 - Thus, in both cases, at least one side of e must go to V S.
 - In other words V S is a vertex cover
- Thus, we have reduced independent set to vertex cover problem.

Reducing Independent set to Clique

- If *S* is an independent set then *S* is clique in $\overline{G} = (V, \overline{E})$
 - For any pair $v_1, v_2 \in S$ there is no edge in *E*
 - means that there is an edge between any such pair in G'
 - i.e, *S* is a clique in \overline{G}
- Thus, we have reduced independent set to the clique problem, while only using polynomial time and space.

NP-completeness Reductions

- We have discussed the left half of this picture
- We won't discuss the right half, since the proofs are similar in many ways, but are more involved.
 - You can find those reductions in the text book.

- **PSPACE:** The class of problems that can be solved using only polynomial amount of space.
 - It is OK to take exponential (or super-exponential) time.

- **PSPACE:** The class of problems that can be solved using only polynomial amount of space.
 - It is OK to take exponential (or super-exponential) time.
- Key point: Unlike time, space is reusable.
 - Result: many exponential algorithms are in PSPACE.
 - Consider universal formulas. We can check them in polynomial space by rerunning the same computation (say, *check*(*v*)) for each *v*.
 - The space used for *check* is recycled, but the time adds up for different *v*'s.

- **PSPACE:** The class of problems that can be solved using only polynomial amount of space.
 - It is OK to take exponential (or super-exponential) time.
- Key point: Unlike time, space is reusable.
 - Result: many exponential algorithms are in PSPACE.
 - Consider universal formulas. We can check them in polynomial space by rerunning the same computation (say, *check*(*v*)) for each *v*.
 - The space used for *check* is recycled, but the time adds up for different *v*'s.
- Note: SAT is in PSPACE
 - Try every possible truthe assignment for variables.

- **PSPACE:** The class of problems that can be solved using only polynomial amount of space.
 - It is OK to take exponential (or super-exponential) time.
- Key point: Unlike time, space is reusable.
 - Result: many exponential algorithms are in PSPACE.
 - Consider universal formulas. We can check them in polynomial space by rerunning the same computation (say, *check*(*v*)) for each *v*.
 - The space used for *check* is recycled, but the time adds up for different *v*'s.
- Note: SAT is in PSPACE
 - Try every possible truthe assignment for variables.
- Thus, all NP-complete problems are in PSPACE.

PSPACE-hard and PSPACE-complete

PSPACE-hard: A problem Π is PSPACE-hard if for any problem Π' in PSPACE there is a *P*-time reduction to Π .
PSPACE-hard and PSPACE-complete

PSPACE-hard: A problem Π is PSPACE-hard if for any problem Π' in PSPACE there is a *P*-time reduction to Π .

PSPACE-complete: PSPACE-hard problems that are in PSPACE.

PSPACE-hard and PSPACE-complete

PSPACE-hard: A problem Π is PSPACE-hard if for any problem Π' in PSPACE there is a *P*-time reduction to Π .

PSPACE-complete: PSPACE-hard problems that are in PSPACE.

- Examples:
 - **QBF**: Quantified boolean formulae
 - NFA totality: Does this NFA accept all strings?

Is $NP \subsetneq PSPACE$?

• We think so, but we can't even prove $P \subsetneq PSPACE$

• The class EXP (aka EXPTIME) consists of the class of problems that can be solved in $O(2^{n^k})$ time for some *k*.

- The class EXP (aka EXPTIME) consists of the class of problems that can be solved in $O(2^{n^k})$ time for some *k*.
- PSPACE \subseteq EXP.
 - Intuitively, you can't do more than EXP work using a PSPACE algorithm because you need polynomial amount of space even if the only thing you did is to count up to 2ⁿ.

- The class EXP (aka EXPTIME) consists of the class of problems that can be solved in $O(2^{n^k})$ time for some k.
- PSPACE \subseteq EXP.
 - Intuitively, you can't do more than EXP work using a PSPACE algorithm because you need polynomial amount of space even if the only thing you did is to count up to 2ⁿ.
- As usual, EXP-hard and EXP-complete are defined using *P*-time reductions.

- The class EXP (aka EXPTIME) consists of the class of problems that can be solved in $O(2^{n^k})$ time for some k.
- PSPACE \subseteq EXP.
 - Intuitively, you can't do more than EXP work using a PSPACE algorithm because you need polynomial amount of space even if the only thing you did is to count up to 2ⁿ.
- As usual, EXP-hard and EXP-complete are defined using *P*-time reductions.
- Generalized versions of games such as chess and checkers are EXP-hard.

- The class EXP (aka EXPTIME) consists of the class of problems that can be solved in $O(2^{n^k})$ time for some *k*.
- PSPACE \subseteq EXP.
 - Intuitively, you can't do more than EXP work using a PSPACE algorithm because you need polynomial amount of space even if the only thing you did is to count up to 2ⁿ.
- As usual, EXP-hard and EXP-complete are defined using *P*-time reductions.
- Generalized versions of games such as chess and checkers are EXP-hard.
- We *think PSPACE* \subseteq *EXP*, but can only prove *P* \subseteq *EXP*.

- These classes can be extended for ever:
 - NEXP: Nondeterministic exponential time EXPSPACE: Problems solvable with exponential space. EEXP: Problems solvable in double exp. time $(O(2^{2^{\binom{n^k}{k}}}))$ for some k

• These classes can be extended for ever:

NEXP: Nondeterministic exponential time EXPSPACE: Problems solvable with exponential space. EEXP: Problems solvable in double exp. time $(O(2^{2^{\binom{n^k}{k}}}))$ for some k

- Examples:
 - Equivalence of regexpr with intersection is EXPSPACE-hard.
 - REs with negation can't be decided even in E^kEXPTIME for any k.

• These classes can be extended for ever:

NEXP: Nondeterministic exponential time EXPSPACE: Problems solvable with exponential space. EEXP: Problems solvable in double exp. time $(O(2^{2^{\binom{n^k}{k}}}))$ for some k

- Examples:
 - Equivalence of regexpr with intersection is EXPSPACE-hard.
 - REs with negation can't be decided even in E^k EXPTIME for any k.
- $P \subseteq NP \subseteq PSPACE \subseteq EXP \subseteq NEXP \subseteq EXPSPACE \subseteq EEXP \subseteq NEEXP \subseteq EEXPSPACE \subseteq \cdots$

• These classes can be extended for ever:

NEXP: Nondeterministic exponential time EXPSPACE: Problems solvable with exponential space. EEXP: Problems solvable in double exp. time $(O(2^{2^{\binom{n^k}{k}}}))$ for some k

- Examples:
 - Equivalence of regexpr with intersection is EXPSPACE-hard.
 - REs with negation can't be decided even in E^kEXPTIME for any k.
- $P \subseteq NP \subseteq PSPACE \subseteq EXP \subseteq NEXP \subseteq EXPSPACE \subseteq EEXP \subseteq NEEXP \subseteq EEXPSPACE \subseteq \cdots$
- We *think* these classes are distinct, but have proofs only for classes that are 3 places apart, e.g., *P* and *EXP*.