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Intro P and NP Hard problems

Search and Optimization Problems

Many problems of our interest are search problems with exponentially (or even
infinitely) many solutions

Shortest of the paths between two vertices

Spanning tree with minimal cost

Combination of variable values that minimize an objective

We should be surprised we find efficient (i.e., polynomial-time) solutions to these
problems

It seems like these should be the exceptions rather than the norm!

What do we do when we hit upon other search problems?
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Intro P and NP Hard problems

Hard Problems: Where you find yourself ...

I can’t find an efficient algorithm, I guess I’m just too dumb.

Images from “Computers and Intractability” by Garey and Johnson
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Intro P and NP Hard problems

Search and Optimization Problems

What do we do when we hit upon hard search problems?

Can we prove they can’t be solved efficiently?

4 / 83



Intro P and NP Hard problems

Hard Problems: Where you would like to be ...

I can’t find an efficient algorithm, because no such algorithm is possible.

Images from “Computers and Intractability” by Garey and Johnson
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Intro P and NP Hard problems

Search and Optimization Problems

Unfortunately, it is very hard to prove that efficient algorithms are impossible

Second best alternative:

Show that the problem is as hard as many other problems that have been worked on by a

host of brilliant scientists over a very long time

Much of complexity theory is concerned with categorizing hard problems into such
equivalence classes
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P , NP , Co-NP , NP-hard and NP-complete
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Intro P and NP Hard problems

Nondeterminism and Search Problems

Nondeterminism is an oft-used abstraction in language theory

Non-deterministic FSA

Non-deterministic PDA

So, why not non-deterministic Turing machines?
Acceptance criteria is analogous to NFA and NPDA
if there is a sequence of transitions to an accepting state, an NDTM will take that path.

What does nondeterminism, a theoretical construct, mean in practice?

You can think of it as a boundless potential to search for and identify the correct path

that leads to a solution

So, it does not change the class of problems that can be solved, just the time/space needed

to solve.
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Intro P and NP Hard problems

Class NP : Non-deterministic Polynomial Time

How they operate:

Guess a solution
verify correctness in polynomial time

Polynomial time verifiability is the key property of NP .

This is how you build a path from P to NP .
Ideal formulation for search problems, where correct solutions are hard to find
but easy to recognize.

Example: Boolean formula satisfiability (SAT )
Given a boolean formula in CNF, find an assignment of {true, false} to
variables that makes it true.
Why not DNF?
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Intro P and NP Hard problems

What are the bounds of NP?

Only Decision problems:
Problems with an “yes” or “no” answer
Optimization problems are generally not in NP
But we can often find optimal solutions using “binary search”

“No” answers are usually not verifiable in P-time

So, complement of NP problems are often not NP .

UNSAT — show that a CNF formula is false for all truth assignments1

Key point: You cannot negate nondeterministic automata.

So, we are unable to convert an NDTM for SAT to solve UNSAT in NP-time.

1Whether UNSAT ∈ NP is unknown!
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Intro P and NP Hard problems

What are the bounds of NP?

Existentially quantified vs Universally quantified formulas

NP is good for ∃x P(x): guess a value for x and check if P(x) holds.
NP is not good for ∀x P(x):
Guessing does not seem to help if you need to check all values of x .

Negation of existential formula yields a universal formula.

No surprise that complement of NP problems are typically not in NP .

UNSAT : ∀x¬P(x) where P is in CNF

VALID: ∀xP(x), where P is in DNF

NP seems to be a good way to separate hard problems from even harder ones!
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Intro P and NP Hard problems

Co-NP: Problems whose complement is in NP

Decision problems that have a polynomially checkable proof when the answer is
“no”

Algorithms Lecture 30: NP-Hard Problems [Fa’13]

is harder than just checking that a solution is correct. But nobody knows how to prove it! The Clay
Mathematics Institute lists P versus NP as the first of its seven Millennium Prize Problems, offering a
$1,000,000 reward for its solution. And yes, in fact, several people have lost their souls attempting to
solve this problem.

A more subtle but still open question is whether the complexity classes NP and co-NP are different.
Even if we can verify every YES answer quickly, there’s no reason to believe we can also verify NO answers
quickly. For example, as far as we know, there is no short proof that a boolean circuit is not satisfiable. It
is generally believed that NP �= co-NP, but nobody knows how to prove it.

�

������

What we think the world looks like.

30.3 NP-hard, NP-easy, and NP-complete

A problem Π is NP-hard if a polynomial-time algorithm for Π would imply a polynomial-time algorithm
for every problem in NP. In other words:

Π is NP-hard ⇐⇒ If Π can be solved in polynomial time, then P=NP

Intuitively, if we could solve one particular NP-hard problem quickly, then we could quickly solve any
problem whose solution is easy to understand, using the solution to that one special problem as a
subroutine. NP-hard problems are at least as hard as any problem in NP.

Calling a problem NP-hard is like saying ‘If I own a dog, then it can speak fluent English.’ You
probably don’t know whether or not I own a dog, but I bet you’repretty sure that I don’t own a talking
dog. Nobody has a mathematical proof that dogs can’t speak English—the fact that no one has ever
heard a dog speak English is evidence, as are the hundreds of examinations of dogs that lacked the
proper mouth shape and brainpower, but mere evidence is not a mathematical proof. Nevertheless, no
sane person would believe me if I said I owned a dog that spoke fluent English. So the statement ‘If I
own a dog, then it can speak fluent English’ has a natural corollary: No one in their right mind should
believe that I own a dog! Likewise, if a problem is NP-hard, no one in their right mind should believe it
can be solved in polynomial time.

Finally, a problem is NP-complete if it is both NP-hard and an element of NP (or ‘NP-easy’). NP-
complete problems are the hardest problems in NP. If anyone finds a polynomial-time algorithm for even
one NP-complete problem, then that would imply a polynomial-time algorithm for every NP-complete
problem. Literally thousands of problems have been shown to be NP-complete, so a polynomial-time
algorithm for one (and therefore all) of them seems incredibly unlikely.

�

������

�������

�����������

More of what we think the world looks like.

3

Biggest open problem: Is P = NP?

Will also imply co-NP = P
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The class Co-NP ∩ NP

Often, problems that are in NP ∩ co-NP are in P

It requires considerable insight and/or structure in the problem to show that
something is both NP and co-NP

This can often be turned into a P-time algorithm

Examples
Linear programming [1979]
Obviously in NP . To see why it is in co-NP , we can derive a lower bound by multiplying the
constraints by a suitable (guessed) number and adding.

Primality testing [2002]
Obviously in co−NP; See “primality certificate” for proof it is NP

Integer factorization?
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Intro P and NP Hard problems

NP-hard and NP-complete

A problem Π is NP-hard if the availability of a polynomial solution to Π will allow
NP-problems to be solved in polynomial time.

Π is NP-hard ⇔ if Π can be solved in P-time, P = NP

NP-complete = NP-hard ∩ NP

Algorithms Lecture 30: NP-Hard Problems [Fa’13]

is harder than just checking that a solution is correct. But nobody knows how to prove it! The Clay
Mathematics Institute lists P versus NP as the first of its seven Millennium Prize Problems, offering a
$1,000,000 reward for its solution. And yes, in fact, several people have lost their souls attempting to
solve this problem.

A more subtle but still open question is whether the complexity classes NP and co-NP are different.
Even if we can verify every YES answer quickly, there’s no reason to believe we can also verify NO answers
quickly. For example, as far as we know, there is no short proof that a boolean circuit is not satisfiable. It
is generally believed that NP �= co-NP, but nobody knows how to prove it.

�
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What we think the world looks like.

30.3 NP-hard, NP-easy, and NP-complete

A problem Π is NP-hard if a polynomial-time algorithm for Π would imply a polynomial-time algorithm
for every problem in NP. In other words:

Π is NP-hard ⇐⇒ If Π can be solved in polynomial time, then P=NP

Intuitively, if we could solve one particular NP-hard problem quickly, then we could quickly solve any
problem whose solution is easy to understand, using the solution to that one special problem as a
subroutine. NP-hard problems are at least as hard as any problem in NP.

Calling a problem NP-hard is like saying ‘If I own a dog, then it can speak fluent English.’ You
probably don’t know whether or not I own a dog, but I bet you’repretty sure that I don’t own a talking
dog. Nobody has a mathematical proof that dogs can’t speak English—the fact that no one has ever
heard a dog speak English is evidence, as are the hundreds of examinations of dogs that lacked the
proper mouth shape and brainpower, but mere evidence is not a mathematical proof. Nevertheless, no
sane person would believe me if I said I owned a dog that spoke fluent English. So the statement ‘If I
own a dog, then it can speak fluent English’ has a natural corollary: No one in their right mind should
believe that I own a dog! Likewise, if a problem is NP-hard, no one in their right mind should believe it
can be solved in polynomial time.

Finally, a problem is NP-complete if it is both NP-hard and an element of NP (or ‘NP-easy’). NP-
complete problems are the hardest problems in NP. If anyone finds a polynomial-time algorithm for even
one NP-complete problem, then that would imply a polynomial-time algorithm for every NP-complete
problem. Literally thousands of problems have been shown to be NP-complete, so a polynomial-time
algorithm for one (and therefore all) of them seems incredibly unlikely.
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More of what we think the world looks like.
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Intro P and NP Hard problems

Polynomial-time Reducibility

Show that a problem A could be transformed into problem B in polynomial time

Called a polynomial-time reduction of A to B

The crux of proofs involving NP-completeness

Implication: if B can be solved in P-time, we can solve A in P-time

An NP-complete problem is one to which any problem in NP can be reduced to.

Never forget the direction: To prove a problem Π is NP-complete, need to show
how all other NP problems can be solved using Π, not vice-versa!
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Intro P and NP Hard problems

Wait! How can I reduce every NP to my problem?

If a particular NP-problem A is given to you, then you can think of a way to reduce
it to your problem B

But how do you go about proving that every NP problem X can be reduced to B

You don’t even know X — indeed, the class NP is infinite!

If you already knew an NP-complete problem, your task is easy!

Simply reduce this NP-complete problem to B, and by transitivity, you have a reduction of

every X ∈ NP to B

So, who will bell the cat?

Stephen Cook [1970] and Leonid Levin [1973] managed to do this!

Cook was denied reappointment/tenure in 1970 at Berkeley, but won the Turing award in

1982!
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Intro P and NP Hard problems

The first NP-complete problem: SAT

How do you show reducibility of arbitrary NP-problems to SAT ?

You start from the
definition, of course!
The class NP is defined in terms of an NDTM

X is in NP if there is an NDTM TX that solves X in polynomial time

Use this NDTM as the basis of proof.

Specifically, show that acceptance by an NDTM can be encoded in terms of a boolean
formula
Model TX tape contents, tape heads, and finite state at each step as a vector of
boolean variables

Need (p(n))2 variables, where p(n) is the (polynomial) runtime of TX

Model each transition as a boolean formula
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Intro P and NP Hard problems

Thanks to Cook-Levin, you can say ...

I can’t find an efficient algorithm, but neither can all these famous people.

Thanks to NP-completeness results, you can say this even if you have been working on an obscure
problem that no one ever looked at!
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Some Hard Decision Problems
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Intro P and NP Hard problems

Traveling Salesman Problem
Figure 8.1 The optimal traveling salesman tour, shown in bold, has length 18.
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3 3
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components of a particular graph constructed from the instance (recall Exercise 3.28). In fact,
in Chapter 9, we’ll see a different polynomial algorithm for this same special case, which is
called 2SAT.
On the other hand, if we are just a little more permissive and allow clauses to contain three

literals, then the resulting problem, known as 3SAT (an example of which we saw earlier), once
again becomes hard to solve!

The traveling salesman problem
In the traveling salesman problem (TSP) we are given n vertices 1, . . . , n and all n(n − 1)/2
distances between them, as well as a budget b. We are asked to find a tour, a cycle that passes
through every vertex exactly once, of total cost b or less—or to report that no such tour exists.
That is, we seek a permutation τ(1), . . . , τ(n) of the vertices such that when they are toured
in this order, the total distance covered is at most b:

dτ(1),τ(2) + dτ(2),τ(3) + · · · + dτ(n),τ(1) ≤ b.

See Figure 8.1 for an example (only some of the distances are shown; assume the rest are very
large).
Notice how we have defined the TSP as a search problem: given an instance, find a tour

within the budget (or report that none exists). But why are we expressing the traveling
salesman problem in this way, when in reality it is an optimization problem, in which the
shortest possible tour is sought? Why dress it up as something else?
For a good reason. Our plan in this chapter is to compare and relate problems. The

framework of search problems is helpful in this regard, because it encompasses optimization
problems like the TSP in addition to true search problems like SAT.
Turning an optimization problem into a search problem does not change its difficulty at all,

because the two versions reduce to one another. Any algorithm that solves the optimization
TSP also readily solves the search problem: find the optimum tour and if it is within budget,
return it; if not, there is no solution.
Conversely, an algorithm for the search problem can also be used to solve the optimization

problem. To see why, first suppose that we somehow knew the cost of the optimum tour; then
we could find this tour by calling the algorithm for the search problem, using the optimum
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Given n vertices and n(n− 1)/2 distances between them, is there a tour (i.e., cycle) of
length b or less that passes through all vertices?
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Hamiltonian Cycle

Simpler than TSP

Is there a cycle that passes through every vertex in the graph?

Earliest reference, posed in the context of chess boards and knights (“Rudrata cycle”)

Longest path is another version of the same problem

When posed as a decision problem, becomes the same as Hamiltonian path problem
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Balanced Cuts

Does there exist a way to partition vertices V in a graph into two sets S and T such
that

there are at most b edges between S and T , and

|S| ≥ |T | ≥ |V |/3
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Integer Linear Programming (ILP) and

Zero-One Equations (ZOE)

ILP: Linear programing, but solutions are limited to integers

Many problems are easy to solve over real numbers but much harder for integers.

Examples:
Knapsack

solutions to equations such as xn + yn = zn

ZOE: A special case of ILP, where the values are just 0 or 1.

Find x such that Ax = 1 where 1 is a column matrix consisting of 1’s.
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3d-Matching

Given triples of compatibilities between men, women and pets, find perfect, 3-way
matches.

Figure 8.4 A more elaborate matchmaking scenario. Each triple is shown as a triangular-
shaped node joining boy, girl, and pet.

Armadillo Bobcat

Carol

Beatrice

AliceChet

Bob

Al

Canary

Independent set, vertex cover, and clique
In the INDEPENDENT SET problem (recall Section 6.7) we are given a graph and an integer g,
and the aim is to find g vertices that are independent, that is, no two of which have an edge
between them. Can you find an independent set of three vertices in Figure 8.5? How about
four vertices? We saw in Section 6.7 that this problem can be solved efficiently on trees, but
for general graphs no polynomial algorithm is known.

Figure 8.5What is the size of the largest independent set in this graph?

There are many other search problems about graphs. In VERTEX COVER, for example, the
input is a graph and a budget b, and the idea is to find b vertices that cover (touch) every
edge. Can you cover all edges of Figure 8.5 with seven vertices? With six? (And do you see the
intimate connection to the INDEPENDENT SET problem?)
VERTEX COVER is a special case of SET COVER, which we encountered in Chapter 5. In

that problem, we are given a set E and several subsets of it, S1, . . . , Sm, along with a budget
b. We are asked to select b of these subsets so that their union is E. VERTEX COVER is the
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Independent set, vertex cover, and clique

Independent set: Does this graph contain
a set of at least k vertices with no edge
between them?

Vertex cover: Does this graph contain a
set of at least k vertices that cover all
edges?

Clique: Does this graph contain at least k
vertices that are fully connected among
themselves?
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edges?

Clique: Does this graph contain at least k
vertices that are fully connected among
themselves?

Figure 8.4 A more elaborate matchmaking scenario. Each triple is shown as a triangular-
shaped node joining boy, girl, and pet.

Armadillo Bobcat

Carol

Beatrice

AliceChet

Bob

Al

Canary

Independent set, vertex cover, and clique
In the INDEPENDENT SET problem (recall Section 6.7) we are given a graph and an integer g,
and the aim is to find g vertices that are independent, that is, no two of which have an edge
between them. Can you find an independent set of three vertices in Figure 8.5? How about
four vertices? We saw in Section 6.7 that this problem can be solved efficiently on trees, but
for general graphs no polynomial algorithm is known.

Figure 8.5What is the size of the largest independent set in this graph?

There are many other search problems about graphs. In VERTEX COVER, for example, the
input is a graph and a budget b, and the idea is to find b vertices that cover (touch) every
edge. Can you cover all edges of Figure 8.5 with seven vertices? With six? (And do you see the
intimate connection to the INDEPENDENT SET problem?)
VERTEX COVER is a special case of SET COVER, which we encountered in Chapter 5. In

that problem, we are given a set E and several subsets of it, S1, . . . , Sm, along with a budget
b. We are asked to select b of these subsets so that their union is E. VERTEX COVER is the

241

51 / 83



Intro P and NP Hard problems

Independent set, vertex cover, and clique

Independent set: Does this graph contain
a set of at least k vertices with no edge
between them?

Vertex cover: Does this graph contain a
set of at least k vertices that cover all
edges?

Clique: Does this graph contain at least k
vertices that are fully connected among
themselves?

Figure 8.4 A more elaborate matchmaking scenario. Each triple is shown as a triangular-
shaped node joining boy, girl, and pet.

Armadillo Bobcat

Carol

Beatrice

AliceChet

Bob

Al

Canary

Independent set, vertex cover, and clique
In the INDEPENDENT SET problem (recall Section 6.7) we are given a graph and an integer g,
and the aim is to find g vertices that are independent, that is, no two of which have an edge
between them. Can you find an independent set of three vertices in Figure 8.5? How about
four vertices? We saw in Section 6.7 that this problem can be solved efficiently on trees, but
for general graphs no polynomial algorithm is known.

Figure 8.5What is the size of the largest independent set in this graph?

There are many other search problems about graphs. In VERTEX COVER, for example, the
input is a graph and a budget b, and the idea is to find b vertices that cover (touch) every
edge. Can you cover all edges of Figure 8.5 with seven vertices? With six? (And do you see the
intimate connection to the INDEPENDENT SET problem?)
VERTEX COVER is a special case of SET COVER, which we encountered in Chapter 5. In

that problem, we are given a set E and several subsets of it, S1, . . . , Sm, along with a budget
b. We are asked to select b of these subsets so that their union is E. VERTEX COVER is the

241

52 / 83



Intro P and NP Hard problems

Easy Vs Hard Problems

Hard Easy

3SAT 2SAT, HORN SAT
TSP MST

Longest path Shortest path
3d-matching bipartite match

Independent set Indep. set on trees
ILP Linear programming

Hamiltonian cycle Euler path,
Knights tour

Balanced cut Min-cut
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NP-completeness: Polynomial-time Reductions

Show that a known NP-complete problem A could be transformed into problem B in
polynomial time

I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I)
No solution to I

h(S) of I
Solution

h

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC )
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.
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Implication: if B can be solved in P-time, we can solve A in P-time

Never forget the direction:
We are proving that B is NP-complete here.
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NP-completeness ReductionsFigure 8.7 Reductions between search problems.

3D MATCHING

RUDRATA CYCLESUBSET SUM

TSP

ILP
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All of NP

SAT

3SAT

VERTEX COVER

INDEPENDENT SET

CLIQUE

8.3 The reductions
We shall now see that the search problems of Section 8.1 can be reduced to one another as
depicted in Figure 8.7. As a consequence, they are all NP-complete.
Before we tackle the specific reductions in the tree, let’s warm up by relating two versions

of the Rudrata problem.

RUDRATA (s, t)-PATH−→RUDRATA CYCLE
Recall the RUDRATA CYCLE problem: given a graph, is there a cycle that passes through each
vertex exactly once? We can also formulate the closely related RUDRATA (s, t)-PATH problem,
in which two vertices s and t are specified, and we want a path starting at s and ending at t
that goes through each vertex exactly once. Is it possible that RUDRATA CYCLE is easier than
RUDRATA (s, t)-PATH? We will show by a reduction that the answer is no.
The reduction maps an instance (G = (V,E), s, t) of RUDRATA (s, t)-PATH into an instance

G� = (V �, E�) of RUDRATA CYCLE as follows: G� is simply G with an additional vertex x and
two new edges {s, x} and {x, t}. For instance:

G G�

s

tt

s

x

So V � = V ∪ {x}, and E � = E ∪ {{s, x}, {x, t}}. How do we recover a Rudrata (s, t)-path in G
given any Rudrata cycle in G�? Easy, we just delete the edges {s, x} and {x, t} from the cycle.
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Reducing all of NP to SAT

We already discussed this

Show how to reduce acceptance by an NDTM to the SAT problem.

Exercise: Show how to transform acceptance by an FSA into an instance of SAT
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Reducing SAT to 3SAT

3SAT : A special case of SAT where each clause has ≤ 3 literals

Reduction involves transforming a disjunction with many literals into a CNF of
disjunctions with ≤ 3 literals per term

The transformation below at most doubles the problem size.

Key Idea: Introduce additional variables:
Example: l1 ∨ l2 ∨ l3 ∨ l4 can be transformed into:

(l1 ∨ l2 ∨ y1) ∧ (y1 ∨ l3 ∨ l4)

For this conjunction to be true, one of {l1, ..., l4} must be true:
So a solution to the transformed problem is a solution to the original — simply discard
assignments for the new variables yi .
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Reducing 3SAT to Independent set

Nontrivial reduction, as the problems are quite different in nature

Idea: Model each of k clauses of 3SAT by a “triangle” in a graph

Figure 8.8 The graph corresponding to (x ∨ y ∨ z) (x ∨ y ∨ z) (x ∨ y ∨ z) (x ∨ y).

y y y

x z x z xz x

y

to pick only one of them for the independent set. Repeat this construction for all clauses—a
clause with two literals will be represented simply by an edge joining the literals. (A clause
with one literal is silly and can be removed in a preprocessing step, since the value of the
variable is determined.) In the resulting graph, an independent set has to pick at most one
literal from each group (clause). To force exactly one choice from each clause, take the goal g
to be the number of clauses; in our example, g = 4.
All that is missing now is a way to prevent us from choosing opposite literals (that is, both

x and x) in different clauses. But this is easy: put an edge between any two vertices that
correspond to opposite literals. The resulting graph for our example is shown in Figure 8.8.
Let’s recap the construction. Given an instance I of 3SAT, we create an instance (G, g) of

INDEPENDENT SET as follows.

• Graph G has a triangle for each clause (or just an edge, if the clause has two literals),
with vertices labeled by the clause’s literals, and has additional edges between any two
vertices that represent opposite literals.

• The goal g is set to the number of clauses.

Clearly, this construction takes polynomial time. However, recall that for a reduction we
do not just need an efficient way to map instances of the first problem to instances of the
second (the function f in the diagram on page 245), but also a way to reconstruct a solution
to the first instance from any solution of the second (the function h). As always, there are two
things to show.

1. Given an independent set S of g vertices in G, it is possible to efficiently recover a satis-
fying truth assignment to I.

For any variable x, the set S cannot contain vertices labeled both x and x, because any such
pair of vertices is connected by an edge. So assign x a value of true if S contains a vertex
labeled x, and a value of false if S contains a vertex labeled x (if S contains neither, then
assign either value to x). Since S has g vertices, it must have one vertex per clause; this truth
assignment satisfies those particular literals, and thus satisfies all clauses.

2. If graph G has no independent set of size g, then the Boolean formula I is unsatisfiable.

249

Independent set of size k must contain one literal from each clause
By setting that literal to true, we obtain a solution for 3SAT

Key point: Avoid conflicts, e.g., assigning true to both x and x
ensure using edges between every variable and its complement
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Reducing 3SAT to Independent set
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Independent set of size k must contain one literal from each clause
By setting that literal to true, we obtain a solution for 3SAT

Key point: Avoid conflicts, e.g., assigning true to both x and x
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Reducing 3SAT to Independent set
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things to show.
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By setting that literal to true, we obtain a solution for 3SAT

Key point: Avoid conflicts, e.g., assigning true to both x and x
ensure using edges between every variable and its complement
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Reducing Independent set to Vertex Cover

If S is an independent set then V − S is a vertex cover

Consider any edge e in the graph

Case 1: Both ends of e are in V − S

Case 2: At least one end of e is S. The other end of e cannot be in S or else S won’t be

independent.

Thus, in both cases, at least one side of e must go to V − S.

In other words V − S is a vertex cover

Thus, we have reduced independent set to vertex cover problem.
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Reducing Independent set to Clique

If S is an independent set then S is clique in G = (V , E)
For any pair v1, v2 ∈ S there is no edge in E
means that there is an edge between any such pair in G′

i.e, S is a clique in G

Thus, we have reduced independent set to the clique problem, while only using
polynomial time and space.
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NP-completeness Reductions
We have discussed the left half of this picture

We won’t discuss the right half, since the proofs are similar in many ways, but are
more involved.
You can find those reductions in the text book.Figure 8.7 Reductions between search problems.
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8.3 The reductions
We shall now see that the search problems of Section 8.1 can be reduced to one another as
depicted in Figure 8.7. As a consequence, they are all NP-complete.
Before we tackle the specific reductions in the tree, let’s warm up by relating two versions

of the Rudrata problem.

RUDRATA (s, t)-PATH−→RUDRATA CYCLE
Recall the RUDRATA CYCLE problem: given a graph, is there a cycle that passes through each
vertex exactly once? We can also formulate the closely related RUDRATA (s, t)-PATH problem,
in which two vertices s and t are specified, and we want a path starting at s and ending at t
that goes through each vertex exactly once. Is it possible that RUDRATA CYCLE is easier than
RUDRATA (s, t)-PATH? We will show by a reduction that the answer is no.
The reduction maps an instance (G = (V,E), s, t) of RUDRATA (s, t)-PATH into an instance

G� = (V �, E�) of RUDRATA CYCLE as follows: G� is simply G with an additional vertex x and
two new edges {s, x} and {x, t}. For instance:

G G�

s

tt

s

x

So V � = V ∪ {x}, and E � = E ∪ {{s, x}, {x, t}}. How do we recover a Rudrata (s, t)-path in G
given any Rudrata cycle in G�? Easy, we just delete the edges {s, x} and {x, t} from the cycle.
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Intro P and NP Hard problems

Beyond NP: PSPACE

PSPACE: The class of problems that can be solved using only polynomial amount of
space.

It is OK to take exponential (or super-exponential) time.

Key point: Unlike time, space is reusable.
Result: many exponential algorithms are in PSPACE.
Consider universal formulas. We can check them in polynomial space by rerunning the same
computation (say, check(v)) for each v .
The space used for check is recycled, but the time adds up for different v’s.

Note: SAT is in PSPACE

Try every possible truthe assignment for variables.

Thus, all NP-complete problems are in PSPACE.

68 / 83



Intro P and NP Hard problems

Beyond NP: PSPACE

PSPACE: The class of problems that can be solved using only polynomial amount of
space.

It is OK to take exponential (or super-exponential) time.

Key point: Unlike time, space is reusable.
Result: many exponential algorithms are in PSPACE.
Consider universal formulas. We can check them in polynomial space by rerunning the same
computation (say, check(v)) for each v .
The space used for check is recycled, but the time adds up for different v’s.

Note: SAT is in PSPACE

Try every possible truthe assignment for variables.

Thus, all NP-complete problems are in PSPACE.

69 / 83



Intro P and NP Hard problems

Beyond NP: PSPACE

PSPACE: The class of problems that can be solved using only polynomial amount of
space.

It is OK to take exponential (or super-exponential) time.

Key point: Unlike time, space is reusable.
Result: many exponential algorithms are in PSPACE.
Consider universal formulas. We can check them in polynomial space by rerunning the same
computation (say, check(v)) for each v .
The space used for check is recycled, but the time adds up for different v’s.

Note: SAT is in PSPACE

Try every possible truthe assignment for variables.

Thus, all NP-complete problems are in PSPACE.

70 / 83



Intro P and NP Hard problems

Beyond NP: PSPACE

PSPACE: The class of problems that can be solved using only polynomial amount of
space.

It is OK to take exponential (or super-exponential) time.

Key point: Unlike time, space is reusable.
Result: many exponential algorithms are in PSPACE.
Consider universal formulas. We can check them in polynomial space by rerunning the same
computation (say, check(v)) for each v .
The space used for check is recycled, but the time adds up for different v’s.

Note: SAT is in PSPACE

Try every possible truthe assignment for variables.

Thus, all NP-complete problems are in PSPACE.
71 / 83



Intro P and NP Hard problems

PSPACE-hard and PSPACE-complete

PSPACE-hard: A problem Π is PSPACE-hard if for any problem Π′ in PSPACE there is
a P-time reduction to Π.

PSPACE-complete: PSPACE-hard problems that are in PSPACE.

Examples:

QBF: Quantified boolean formulae
NFA totality: Does this NFA accept all strings?

Is NP ⊊ PSPACE?

We think so, but we can’t even prove P ⊊ PSPACE
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Intro P and NP Hard problems

Classes EXP, EXP-hard and EXP-complete

The class EXP (aka EXPTIME) consists of the class of problems that can be solved in
O(2n

k
) time for some k.

PSPACE ⊆ EXP.

Intuitively, you can’t do more than EXP work using a PSPACE algorithm because you

need polynomial amount of space even if the only thing you did is to count up to 2n.

As usual, EXP-hard and EXP-complete are defined using P-time reductions.

Generalized versions of games such as chess and checkers are EXP-hard.

We think PSPACE ⊊ EXP , but can only prove P ⊊ EXP .
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Intro P and NP Hard problems

Where do we stop?

These classes can be extended for ever:
NEXP: Nondeterministic exponential time
EXPSPACE: Problems solvable with exponential space.

EEXP: Problems solvable in double exp. time (O(22
(nk)

)) for some k

Examples:

Equivalence of regexpr with intersection is EXPSPACE-hard.
REs with negation can’t be decided even in EkEXPTIME for any k.

P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP ⊆ EXPSPACE ⊆ EEXP ⊆ NEEXP ⊆ EEXPSPACE ⊆ · · ·

We think these classes are distinct, but have proofs only for classes that are 3 places apart,

e.g., P and EXP .
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