R. Sekar

1/83

Intro P and NP Hard problems

Search and Optimization Problems

@ Many problems of our interest are search problems with exponentially (or even
infinitely) many solutions
e Shortest of the paths between two vertices
e Spanning tree with minimal cost

e Combination of variable values that minimize an objective

@ We should be surprised we find efficient (i.e., polynomial-time) solutions to these
problems

o It seems like these should be the exceptions rather than the norm!

@ What do we do when we hit upon other search problems?

2/83

q .

| can’t find an efficient algorithm, | guess I’'m just too dumb.

Images from “Computers and Intractability” by Garey and Johnson 3/83

e What do we do when we hit upon hard search problems?

e Can we prove they can’t be solved efficiently?

4/83

| can’t find an efficient algorithm, because no such algorithm is possible. 583

Intro P and NP Hard problems

Search and Optimization Problems

e Unfortunately, it is very hard to prove that efficient algorithms are impossible

@ Second best alternative:
e Show that the problem is as hard as many other problems that have been worked on by a

host of brilliant scientists over a very long time

@ Much of complexity theory is concerned with categorizing hard problems into such

equivalence classes

6/83

Intro P and NP Hard problems

P, NP, Co-NP, NP-hard and NP-complete

7/83

Intro P and NP Hard problems

Nondeterminism and Search Problems

@ Nondeterminism is an oft-used abstraction in language theory

e Non-deterministic FSA

e Non-deterministic PDA

@ So, why not non-deterministic Turing machines?
o Acceptance criteria is analogous to NFA and NPDA

o if there is a sequence of transitions to an accepting state, an NDTM will take that path.
@ What does nondeterminism, a theoretical construct, mean in practice?
e You can think of it as a boundless potential to search for and identify the correct path

that leads to a solution
e So, it does not change the class of problems that can be solved, just the time/space needed

to solve.

8/83

How they operate:

@ Guess a solution

@ verify correctness in polynomial time

9/83

Intro P and NP Hard problems

Class NP: Non-deterministic Polynomial Time

How they operate:
@ Guess a solution

e verify correctness in polynomial time

Polynomial time verifiability is the key property of NP.
@ This is how you build a path from P to NP.
o Ideal formulation for search problems, where correct solutions are hard to find

but easy to recognize.

10/83

Intro P and NP Hard problems

Class NP: Non-deterministic Polynomial Time

How they operate:
@ Guess a solution

e verify correctness in polynomial time

Polynomial time verifiability is the key property of NP.
@ This is how you build a path from P to NP.
o Ideal formulation for search problems, where correct solutions are hard to find

but easy to recognize.

Example: Boolean formula satisfiability (SAT)
@ Given a boolean formula in CNF, find an assignment of {true, false}to
variables that makes it true.
e Why not DNF?

11/83

@ Only Decision problems:

e Problems with an “yes” or “no” answer
e Optimization problems are generally not in NP

@ But we can often find optimal solutions using “binary search”

"Whether UNSAT € NP is unknown!

12/83

Intro P and NP Hard problems

What are the bounds of NP?

e Only Decision problems:

o Problems with an “yes” or “no” answer
e Optimization problems are generally not in NP
@ But we can often find optimal solutions using “binary search”

@ “No” answers are usually not verifiable in P-time

e So, complement of NP problems are often not NP.
o UNSAT — show that a CNF formula is false for all truth assignments'

"Whether UNSAT € NP is unknown!

13/83

Intro P and NP Hard problems

What are the bounds of NP?

e Only Decision problems:
o Problems with an “yes” or “no” answer
e Optimization problems are generally not in NP
@ But we can often find optimal solutions using “binary search”
@ “No” answers are usually not verifiable in P-time

e So, complement of NP problems are often not NP.
o UNSAT — show that a CNF formula is false for all truth assignments'

e Key point: You cannot negate nondeterministic automata.
e So, we are unable to convert an NDTM for SAT to solve UNSAT in NP-time.

"Whether UNSAT € NP is unknown!

14/83

e Existentially quantified vs Universally quantified formulas

o NP is good for 3x P(X): guess a value for X and check if P(x) holds.
e NP is not good for Vx P(x):

@ Guessing does not seem to help if you need to check all values of x.

15/83

Intro P and NP Hard problems

What are the bounds of NP?

o Existentially quantified vs Universally quantified formulas
o NP is good for Ix P(X): guess a value for X and check if P(x) holds.
o NP is not good for Vx P(x):

@ Guessing does not seem to help if you need to check all values of x.
o Negation of existential formula yields a universal formula.
o No surprise that complement of NP problems are typically not in NP.
o UNSAT: Vx—P(x) where P is in CNF
o VALID: VxP(x), where P is in DNF

16/83

Intro P and NP Hard problems

What are the bounds of NP?

o Existentially quantified vs Universally quantified formulas

o NP is good for Ix P(X): guess a value for X and check if P(x) holds.

o NP is not good for Vx P(x):
@ Guessing does not seem to help if you need to check all values of x.

o Negation of existential formula yields a universal formula.
o No surprise that complement of NP problems are typically not in NP.
o UNSAT: Vx—P(x) where P is in CNF
o VALID: VxP(x), where P is in DNF

@ NP seems to be a good way to separate hard problems from even harder ones!

17/83

Intro P and NP Hard problems

Co-NP: Problems whose complement is in NP

@ Decision problems that have a polynomially checkable proof when the answer is

3 »

no

®)

What we think the world looks like.

18/83

Intro P and NP Hard problems

Co-NP: Problems whose complement is in NP

@ Decision problems that have a polynomially checkable proof when the answer is

3 »

no

®)

What we think the world looks like.

@ Biggest open problem: Is P = NP?
e Will also imply co-NP = P

19/83

e Often, problems that are in NP N co-NP are in P

20/83

Intro P and NP Hard problems

The class Co-NP N NP

e Often, problems that are in NP N co-NP are in P

@ It requires considerable insight and/or structure in the problem to show that
something is both NP and co-NP

e This can often be turned into a P-time algorithm

21/83

Intro P and NP Hard problems

The class Co-NP N NP

e Often, problems that are in NP N co-NP are in P

@ It requires considerable insight and/or structure in the problem to show that
something is both NP and co-NP

e This can often be turned into a P-time algorithm

e Examples
e Linear programming [1979]
o Obviously in NP. To see why it is in co-NP, we can derive a lower bound by multiplying the

constraints by a suitable (guessed) number and adding.

22/83

Intro P and NP Hard problems

The class Co-NP N NP

e Often, problems that are in NP N co-NP are in P

@ It requires considerable insight and/or structure in the problem to show that
something is both NP and co-NP

e This can often be turned into a P-time algorithm

e Examples
e Linear programming [1979]
o Obviously in NP. To see why it is in co-NP, we can derive a lower bound by multiplying the
constraints by a suitable (guessed) number and adding.
o Primality testing [2002]
e Obviously in co—NP; See “primality certificate” for proof it is NP

23/83

Intro P and NP Hard problems

The class Co-NP N NP

e Often, problems that are in NP N co-NP are in P

@ It requires considerable insight and/or structure in the problem to show that
something is both NP and co-NP

e This can often be turned into a P-time algorithm

e Examples
e Linear programming [1979]
o Obviously in NP. To see why it is in co-NP, we can derive a lower bound by multiplying the
constraints by a suitable (guessed) number and adding.
o Primality testing [2002]
e Obviously in co—NP; See “primality certificate” for proof it is NP

o Integer factorization?

24/83

Intro P and NP Hard problems

NP-hard and NP-complete

o A problem [1is NP-hard if the availability of a polynomial solution to I1 will allow
NP-problems to be solved in polynomial time.

e [1is NP-hard < if I1 can be solved in P-time, P = NP

@ NP-complete = NP-hard N NP

NP-complete

25/83

@ Show that a problem A could be transformed into problem B in polynomial time

o Called a polynomial-time reduction of A to B

o The crux of proofs involving NP-completeness

26/83

Intro P and NP Hard problems

Polynomial-time Reducibility

@ Show that a problem A could be transformed into problem B in polynomial time

e Called a polynomial-time reduction of A to B

e The crux of proofs involving NP-completeness

e Implication: if B can be solved in P-time, we can solve A in P-time

27/83

Intro P and NP Hard problems

Polynomial-time Reducibility

@ Show that a problem A could be transformed into problem B in polynomial time

e Called a polynomial-time reduction of A to B

e The crux of proofs involving NP-completeness
e Implication: if B can be solved in P-time, we can solve A in P-time

@ An NP-complete problem is one to which any problem in NP can be reduced to.

28/83

Intro P and NP Hard problems

Polynomial-time Reducibility

@ Show that a problem A could be transformed into problem B in polynomial time

e Called a polynomial-time reduction of A to B

e The crux of proofs involving NP-completeness
e Implication: if B can be solved in P-time, we can solve A in P-time
@ An NP-complete problem is one to which any problem in NP can be reduced to.

e Never forget the direction: To prove a problem [1is NP-complete, need to show

how all other NP problems can be solved using [1, not vice-versa!

29/83

o If a particular NP-problem A is given to you, then you can think of a way to reduce

it to your problem B

30/83

Intro P and NP Hard problems

Wait! How can | reduce every NP to my problem?

o If a particular NP-problem A is given to you, then you can think of a way to reduce

it to your problem B

@ But how do you go about proving that every NP problem X can be reduced to B

e You don’t even know X — indeed, the class NP is infinite!

31/83

Intro P and NP Hard problems

Wait! How can | reduce every NP to my problem?

o If a particular NP-problem A is given to you, then you can think of a way to reduce
it to your problem B
@ But how do you go about proving that every NP problem X can be reduced to B

e You don’t even know X — indeed, the class NP is infinite!

o If you already knew an NP-complete problem, your task is easy!
e Simply reduce this NP-complete problem to B, and by transitivity, you have a reduction of

every X € NPto B

32/83

Intro P and NP Hard problems

Wait! How can | reduce every NP to my problem?

o If a particular NP-problem A is given to you, then you can think of a way to reduce

it to your problem B

@ But how do you go about proving that every NP problem X can be reduced to B

e You don’t even know X — indeed, the class NP is infinite!

o If you already knew an NP-complete problem, your task is easy!
e Simply reduce this NP-complete problem to B, and by transitivity, you have a reduction of
every X € NPto B

@ So, who will bell the cat?
o Stephen Cook [1970] and Leonid Levin [1973] managed to do this!
o Cook was denied reappointment/tenure in 1970 at Berkeley, but won the Turing award in

1982!

33/83

How do you show reducibility of arbitrary NP-problems to SAT?

34/83

Intro P and NP Hard problems

The first NP-complete problem: SAT

How do you show reducibility of arbitrary NP-problems to SAT? You start from the
definition, of course!

@ The class NP is defined in terms of an NDTM
e Xisin NP if there is an NDTM Ty that solves X in polynomial time

35/83

Intro P and NP Hard problems

The first NP-complete problem: SAT

How do you show reducibility of arbitrary NP-problems to SAT? You start from the
definition, of course!

@ The class NP is defined in terms of an NDTM
e Xisin NP if there is an NDTM Ty that solves X in polynomial time

@ Use this NDTM as the basis of proof.

36/83

Intro P and NP Hard problems

The first NP-complete problem: SAT

How do you show reducibility of arbitrary NP-problems to SAT? You start from the
definition, of course!

@ The class NP is defined in terms of an NDTM
e Xisin NP if there is an NDTM Ty that solves X in polynomial time
@ Use this NDTM as the basis of proof.

Specifically, show that acceptance by an NDTM can be encoded in terms of a boolean

formula

37/83

Intro P and NP Hard problems

The first NP-complete problem: SAT

How do you show reducibility of arbitrary NP-problems to SAT? You start from the
definition, of course!
@ The class NP is defined in terms of an NDTM

e Xisin NP if there is an NDTM Ty that solves X in polynomial time

@ Use this NDTM as the basis of proof.

Specifically, show that acceptance by an NDTM can be encoded in terms of a boolean

formula

@ Model Ty tape contents, tape heads, and finite state at each step as a vector of
boolean variables

38/83

Intro P and NP Hard problems

The first NP-complete problem: SAT

How do you show reducibility of arbitrary NP-problems to SAT? You start from the
definition, of course!
@ The class NP is defined in terms of an NDTM

e Xisin NP if there is an NDTM Ty that solves X in polynomial time

@ Use this NDTM as the basis of proof.

Specifically, show that acceptance by an NDTM can be encoded in terms of a boolean

formula

@ Model Ty tape contents, tape heads, and finite state at each step as a vector of
boolean variables

o Need (p(n))? variables, where p(n) is the (polynomial) runtime of Ty

39/83

Intro P and NP Hard problems

The first NP-complete problem: SAT

How do you show reducibility of arbitrary NP-problems to SAT? You start from the
definition, of course!
@ The class NP is defined in terms of an NDTM

e Xisin NP if there is an NDTM Ty that solves X in polynomial time

@ Use this NDTM as the basis of proof.
Specifically, show that acceptance by an NDTM can be encoded in terms of a boolean
formula

@ Model Ty tape contents, tape heads, and finite state at each step as a vector of
boolean variables

o Need (p(n))? variables, where p(n) is the (polynomial) runtime of Ty

@ Model each transition as a boolean formula
40/83

I can’t find an efficient algorithm, but neither can all these famous people.

41/83

Some Hard Decision Problems

42/83

Intro P and NP Hard problems

Traveling Salesman Problem

6
Given n vertices and n(n — 1)/2 distances between them, is there a tour (i.e., cycle) of

length b or less that passes through all vertices?
43/83

Intro P and NP Hard problems

Hamiltonian Cycle

e Simpler than TSP

o Is there a cycle that passes through every vertex in the graph?
o Earliest reference, posed in the context of chess boards and knights (“Rudrata cycle”)

@ Longest path is another version of the same problem

e When posed as a decision problem, becomes the same as Hamiltonian path problem

44/83

Does there exist a way to partition vertices V in a graph into two sets S and T such
that

@ there are at most b edges between S and T, and

o |S|=[T|=]v]|/3

45/83

ILP: Linear programing, but solutions are limited to integers

@ Many problems are easy to solve over real numbers but much harder for integers.

46/83

ILP: Linear programing, but solutions are limited to integers

@ Many problems are easy to solve over real numbers but much harder for integers.

e Examples:
e Knapsack

e solutions to equations such as x" + y" = z"

47/83

Intro P and NP Hard problems

Integer Linear Programming (ILP) and
Zero-One Equations (ZOE)

ILP: Linear programing, but solutions are limited to integers

@ Many problems are easy to solve over real numbers but much harder for integers.
e Examples:

o Knapsack

e solutions to equations such as x" + y" = z"

ZOE: A special case of ILP, where the values are just 0 or 1.

@ Find x such that Ax = 1 where 1 is a column matrix consisting of 1’s.

48/83

Intro P and NP Hard problems

3d-Matching

@ Given triples of compatibilities between men, women and pets, find perfect, 3-way

matches.

Chet Alice

Bob Beatrice

Al Carol

Armadillo Bobcat Canary

49/83

Independent set: Does this graph contain

a set of at least k vertices with no edge
between them?

50/83

Intro P and NP Hard problems

Independent set, vertex cover, and clique

Independent set: Does this graph contain

a set of at least k vertices with no edge
between them?

Vertex cover: Does this graph contain a

set of at least k vertices that cover all
edges?

51/83

Intro P and NP Hard problems

Independent set, vertex cover, and clique

Independent set: Does this graph contain

a set of at least k vertices with no edge
between them?

Vertex cover: Does this graph contain a

set of at least k vertices that cover all
edges?

Clique: Does this graph contain at least k

vertices that are fully connected among
themselves?

52/83

Hard Easy

TSP MST

ILP Linear programming

53/83

Intro P and NP Hard problems

NP-completeness: Polynomial-time Reductions

@ Show that a known NP-complete problem A could be transformed into problem B in

polynomial time

Algorithm for A
) Solution S of f([I) Solution
In;tance ’7\ Instance f(1) Algorithm h h(S) of I
for B No solution to f(I)
No solution to I

e Implication: if B can be solved in P-time, we can solve A in P-time

e Never forget the direction:

e We are proving that B is NP-complete here.

54/83

All of NP

l

SAT
l
3SAT
/ \
INDEPENDENT SET 3D MATCHING
/O |
VERTEX COVER CLIQUE ZOE

SUBSET suM ILP RUDRATA CYCLE

|

TSP

55/83

@ We already discussed this

e Show how to reduce acceptance by an NDTM to the SAT problem.

56/83

@ We already discussed this

e Show how to reduce acceptance by an NDTM to the SAT problem.

o Exercise: Show how to transform acceptance by an FSA into an instance of SAT

57/83

@ 3SAT: A special case of SAT where each clause has < 3 literals

58/83

@ 3SAT: A special case of SAT where each clause has < 3 literals

@ Reduction involves transforming a disjunction with many literals into a CNF of

disjunctions with < 3 literals per term

59/83

Intro P and NP Hard problems

Reducing SAT to 3SAT

@ 3SAT: A special case of SAT where each clause has < 3 literals

@ Reduction involves transforming a disjunction with many literals into a CNF of

disjunctions with < 3 literals per term
@ The transformation below at most doubles the problem size.

o Key Idea: Introduce additional variables:
o Example: [} V [, V 5V 4 can be transformed into:

(l1 \/[2\/)/1)/\(W\/[3\/[4)

60/83

Intro P and NP Hard problems

Reducing SAT to 3SAT

@ 3SAT: A special case of SAT where each clause has < 3 literals

@ Reduction involves transforming a disjunction with many literals into a CNF of

disjunctions with < 3 literals per term
@ The transformation below at most doubles the problem size.

o Key Idea: Introduce additional variables:
o Example: [} V [, V 5V 4 can be transformed into:
(l1 V [2 \/y1) A (W\/ [3 V [4)

For this conjunction to be true, one of {l1, ..., [4} must be true:
@ So asolution to the transformed problem is a solution to the original — simply discard

assignments for the new variables y;.

61/83

Intro P and NP Hard problems

Reducing 3SAT to Independent set

@ Nontrivial reduction, as the problems are quite different in nature

@ Idea: Model each of k clauses of 3SAT by a “triangle” in a graph

The graph corresponding to (ZVyVZz) (zVyVz) (xVyVz) (TVY).

62/83

Intro P and NP Hard problems

Reducing 3SAT to Independent set

@ Nontrivial reduction, as the problems are quite different in nature

@ Idea: Model each of k clauses of 3SAT by a “triangle” in a graph

The graph corresponding to (ZVyVZz) (zVyVz) (xVyVz) (TVY).

o Independent set of size k must contain one literal from each clause
o By setting that literal to true, we obtain a solution for 3SAT

63/83

Intro P and NP Hard problems

Reducing 3SAT to Independent set

@ Nontrivial reduction, as the problems are quite different in nature

@ Idea: Model each of k clauses of 3SAT by a “triangle” in a graph

The graph corresponding to (ZVyVZz) (zVyVz) (zVyVz) (TVY)

o Independent set of size k must contain one literal from each clause
o By setting that literal to true, we obtain a solution for 3SAT

e Key point: Avoid conflicts, e.g., assigning true to both x and X
@ ensure using edges between every variable and its complement
64/83

Intro P and NP Hard problems

Reducing Independent set to Vertex Cover

e If Sis an independent set then V — S is a vertex cover
e Consider any edge e in the graph
Case 1: Both ends of earein V — S

o Case 2: At least one end of e is S. The other end of e cannot be in S or else S won’t be

independent.
e Thus, in both cases, at least one side of e must goto V — S.

In other words V — S is a vertex cover

@ Thus, we have reduced independent set to vertex cover problem.

65/83

Intro P and NP Hard problems

Reducing Independent set to Clique

e If Sis an independent set then S is clique in G = (V, E)
e For any pair v, v, € S there is no edge in E
o means that there is an edge between any such pair in G’
e ie Sisacliquein G
@ Thus, we have reduced independent set to the clique problem, while only using

polynomial time and space.

66/83

Intro P and NP Hard problems

NP-completeness Reductions

@ We have discussed the left halt of this picture
e We won’t discuss the right half, since the proofs are similar in many ways, but are

more involved.
e You can find those reductions in the text book.

All of NP
|
S;I\T
3SAT
,//////// \\\\\\\\\\‘
INDEPENDENT SET 3D MATCHING
/N
VERTEX COVER CLIQUE Z(EE

SUBSET sUM ILP RUDRATA CYCLE

I

TSP
67/83

@ PSPACE: The class of problems that can be solved using only polynomial amount of

space.

e It is OK to take exponential (or super-exponential) time.

68/83

Intro P and NP Hard problems

Beyond NP: PSPACE

o PSPACE: The class of problems that can be solved using only polynomial amount of

space.

o Itis OK to take exponential (or super-exponential) time.

e Key point: Unlike time, space is reusable.
e Result: many exponential algorithms are in PSPACE.
e Consider universal formulas. We can check them in polynomial space by rerunning the same

computation (say, check(v)) for each v.
@ The space used for check is recycled, but the time adds up for different v’s.

69/83

Intro P and NP Hard problems

Beyond NP: PSPACE

o PSPACE: The class of problems that can be solved using only polynomial amount of

space.

o Itis OK to take exponential (or super-exponential) time.

e Key point: Unlike time, space is reusable.
e Result: many exponential algorithms are in PSPACE.
e Consider universal formulas. We can check them in polynomial space by rerunning the same
computation (say, check(v)) for each v.

@ The space used for check is recycled, but the time adds up for different v’s.

@ Note: SAT is in PSPACE

o Try every possible truthe assignment for variables.

70/83

Intro P and NP Hard problems

Beyond NP: PSPACE

o PSPACE: The class of problems that can be solved using only polynomial amount of
space.

o Itis OK to take exponential (or super-exponential) time.

e Key point: Unlike time, space is reusable.
e Result: many exponential algorithms are in PSPACE.
e Consider universal formulas. We can check them in polynomial space by rerunning the same
computation (say, check(v)) for each v.
@ The space used for check is recycled, but the time adds up for different v’s.

@ Note: SAT is in PSPACE

o Try every possible truthe assignment for variables.

@ Thus, all NP-complete problems are in PSPACE.

71/83

PSPACE-hard: A problem I is PSPACE-hard if for any problem [1" in PSPACE there is

a P-time reduction to I.

72/83

PSPACE-hard: A problem I is PSPACE-hard if for any problem [1" in PSPACE there is

a P-time reduction to I.

PSPACE-complete: PSPACE-hard problems that are in PSPACE.

73/83

Intro P and NP Hard problems

PSPACE-hard and PSPACE-complete

PSPACE-hard: A problem 1 is PSPACE-hard if for any problem I1" in PSPACE there is
a P-time reduction to 1.
PSPACE-complete: PSPACE-hard problems that are in PSPACE.
e Examples:
QBF: Quantified boolean formulae
NFA totality: Does this NFA accept all strings?
Is NP C PSPACE?
@ We think so, but we can’t even prove P C PSPACE

74/83

@ The class EXP (aka EXPTIME) consists of the class of problems that can be solved in
0(2™) time for some k.

75/83

Intro P and NP Hard problems

Classes EXP, EXP-hard and EXP-complete

The class EXP (aka EXPTIME) consists of the class of problems that can be solved in
0(2™) time for some k.

e PSPACE C EXP.

o Intuitively, you can’t do more than EXP work using a PSPACE algorithm because you

need polynomial amount of space even if the only thing you did is to count up to 2".

76/83

Intro P and NP Hard problems

Classes EXP, EXP-hard and EXP-complete

@ The class EXP (aka EXPTIME) consists of the class of problems that can be solved in
0(2™) time for some k.

e PSPACE C EXP.
o Intuitively, you can’t do more than EXP work using a PSPACE algorithm because you

need polynomial amount of space even if the only thing you did is to count up to 2".

@ As usual, EXP-hard and EXP-complete are defined using P-time reductions.

77/83

Intro P and NP Hard problems

Classes EXP, EXP-hard and EXP-complete

@ The class EXP (aka EXPTIME) consists of the class of problems that can be solved in
0(2™) time for some k.

e PSPACE C EXP.
o Intuitively, you can’t do more than EXP work using a PSPACE algorithm because you

need polynomial amount of space even if the only thing you did is to count up to 2".
@ As usual, EXP-hard and EXP-complete are defined using P-time reductions.

o Generalized versions of games such as chess and checkers are EXP-hard.

78/83

Intro P and NP Hard problems

Classes EXP, EXP-hard and EXP-complete

@ The class EXP (aka EXPTIME) consists of the class of problems that can be solved in
0(2™) time for some k.

e PSPACE C EXP.

o Intuitively, you can’t do more than EXP work using a PSPACE algorithm because you

need polynomial amount of space even if the only thing you did is to count up to 2".
@ As usual, EXP-hard and EXP-complete are defined using P-time reductions.
o Generalized versions of games such as chess and checkers are EXP-hard.

@ We think PSPACE C EXP, but can only prove P C EXP.

79/83

@ These classes can be extended for ever:

NEXP: Nondeterministic exponential time
EXPSPACE: Problems solvable with exponential spac
k

n

EEXP: Problems solvable in double exp. time (O(22

()

e.

)) for some k

80/83

Intro P and NP Hard problems

Where do we stop?

@ These classes can be extended for ever:

NEXP: Nondeterministic exponential time
EXPSPACE: Problems solvable with exponential space.

()

EEXP: Problems solvable in double exp. time (O(2** ")) for some k

@ Examples:
o Equivalence of regexpr with intersection is EXPSPACE-hard.
o REs with negation can’t be decided even in EXEXPTIME for any k.

81/83

Intro P and NP Hard problems

Where do we stop?

@ These classes can be extended for ever:

NEXP: Nondeterministic exponential time

EXPSPACE: Problems solvable with exponential space.
()

EEXP: Problems solvable in double exp. time (O(2** ")) for some k

@ Examples:

o Equivalence of regexpr with intersection is EXPSPACE-hard.
o REs with negation can’t be decided even in EXEXPTIME for any k.

@ P C NP C PSPACE C EXP C NEXP C EXPSPACE C EEXP C NEEXP C EEXPSPACE C - - -

82/83

Intro P and NP Hard problems

Where do we stop?

@ These classes can be extended for ever:
NEXP: Nondeterministic exponential time
EXPSPACE: Problems solvable with exponential space.

nk
EEXP: Problems solvable in double exp. time (0(22())) for some k

@ Examples:

o Equivalence of regexpr with intersection is EXPSPACE-hard.
o REs with negation can’t be decided even in EXEXPTIME for any k.

@ P C NP C PSPACE C EXP C NEXP C EXPSPACE C EEXP C NEEXP C EEXPSPACE C - - -
@ We think these classes are distinct, but have proofs only for classes that are 3 places apart,

e.g., Pand EXP.

83/83

	Intro
	P and NP
	Hard problems

