
Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Dynamic Programming and Equation Solving

The crux of a dynamic programming solution: set up equation to captures a problem’s
optimal substructure.

The equation implies dependencies on subproblem solutions.

Dynamic programming algorithm: finds a schedule that respects these dependencies

Typically, dependencies form a DAG: its topological sort yields the right schedule

Cyclic dependencies: What if dependencies don’t form a DAG, but is a general graph.

Key Idea: Use iterative techniques to solve (recursive) equations

1 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Dynamic Programming and Equation Solving

The crux of a dynamic programming solution: set up equation to captures a problem’s
optimal substructure.

The equation implies dependencies on subproblem solutions.

Dynamic programming algorithm: finds a schedule that respects these dependencies

Typically, dependencies form a DAG: its topological sort yields the right schedule

Cyclic dependencies: What if dependencies don’t form a DAG, but is a general graph.

Key Idea: Use iterative techniques to solve (recursive) equations

2 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Dynamic Programming and Equation Solving

The crux of a dynamic programming solution: set up equation to captures a problem’s
optimal substructure.

The equation implies dependencies on subproblem solutions.

Dynamic programming algorithm: finds a schedule that respects these dependencies

Typically, dependencies form a DAG: its topological sort yields the right schedule

Cyclic dependencies: What if dependencies don’t form a DAG, but is a general graph.

Key Idea: Use iterative techniques to solve (recursive) equations

3 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Dynamic Programming and Equation Solving

The crux of a dynamic programming solution: set up equation to captures a problem’s
optimal substructure.

The equation implies dependencies on subproblem solutions.

Dynamic programming algorithm: finds a schedule that respects these dependencies

Typically, dependencies form a DAG: its topological sort yields the right schedule

Cyclic dependencies: What if dependencies don’t form a DAG, but is a general graph.

Key Idea: Use iterative techniques to solve (recursive) equations

4 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Dynamic Programming and Equation Solving

The crux of a dynamic programming solution: set up equation to captures a problem’s
optimal substructure.

The equation implies dependencies on subproblem solutions.

Dynamic programming algorithm: finds a schedule that respects these dependencies

Typically, dependencies form a DAG: its topological sort yields the right schedule

Cyclic dependencies: What if dependencies don’t form a DAG, but is a general graph.

Key Idea: Use iterative techniques to solve (recursive) equations

5 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Dynamic Programming and Equation Solving

The crux of a dynamic programming solution: set up equation to captures a problem’s
optimal substructure.

The equation implies dependencies on subproblem solutions.

Dynamic programming algorithm: finds a schedule that respects these dependencies

Typically, dependencies form a DAG: its topological sort yields the right schedule

Cyclic dependencies: What if dependencies don’t form a DAG, but is a general graph.

Key Idea: Use iterative techniques to solve (recursive) equations

6 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Fixpoints

A fixpoint is a solution to an equation:

Substitute the solution on the rhs, it yields the lhs.

Example 1: y = y2 − 12.

A fixpoint is y = 4:
y = y2 − 12

∣∣y=4 = 42 − 12 = 4
i.e., substituting y = 4 on the rhs returns the same value for y .

A second fix point is y = −3

7 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Fixpoints

A fixpoint is a solution to an equation:

Substitute the solution on the rhs, it yields the lhs.

Example 1: y = y2 − 12.

A fixpoint is y = 4:
y = y2 − 12

∣∣y=4 = 42 − 12 = 4
i.e., substituting y = 4 on the rhs returns the same value for y .

A second fix point is y = −3

8 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Fixpoints (2)

A fixpoint is a solution to an equation:
Example 2: 7x = 2y − 4, 2xy = 2x3 + 2y + x .
First, rewrite it to expose the fixpoint structure better:

x = (2y − 4)/7, y = x2 + y/x + 0.5

One fixpoint is x = 2, y = 9.

x = (2y − 4)/7
∣∣x=2,y=9 = (18− 4)/7 = 2

y = x2 + y/x + 0.5
∣∣
x=2,y=9 = 22 + 9/2+ 0.5 = 9

Again, we get the same values after substitution, i.e., a fixpoint.

The term “fixpoint” emphasizes an iterative strategy.

Example techniques: Gauss-Seidel method (linear system of equations), Newton’s
method (finding roots), ...

9 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Fixpoints (2)

A fixpoint is a solution to an equation:
Example 2: 7x = 2y − 4, 2xy = 2x3 + 2y + x .
First, rewrite it to expose the fixpoint structure better:

x = (2y − 4)/7, y = x2 + y/x + 0.5

One fixpoint is x = 2, y = 9.

x = (2y − 4)/7
∣∣x=2,y=9 = (18− 4)/7 = 2

y = x2 + y/x + 0.5
∣∣
x=2,y=9 = 22 + 9/2+ 0.5 = 9

Again, we get the same values after substitution, i.e., a fixpoint.

The term “fixpoint” emphasizes an iterative strategy.

Example techniques: Gauss-Seidel method (linear system of equations), Newton’s
method (finding roots), ...

10 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Fixpoints (2)

A fixpoint is a solution to an equation:
Example 2: 7x = 2y − 4, 2xy = 2x3 + 2y + x .
First, rewrite it to expose the fixpoint structure better:

x = (2y − 4)/7, y = x2 + y/x + 0.5

One fixpoint is x = 2, y = 9.

x = (2y − 4)/7
∣∣x=2,y=9 = (18− 4)/7 = 2

y = x2 + y/x + 0.5
∣∣
x=2,y=9 = 22 + 9/2+ 0.5 = 9

Again, we get the same values after substitution, i.e., a fixpoint.

The term “fixpoint” emphasizes an iterative strategy.

Example techniques: Gauss-Seidel method (linear system of equations), Newton’s
method (finding roots), ...

11 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Convergence

Convergence is a major concern in iterative methods

For real-values variables, need to start close enough to the solution, or else the iterative

procedure may not converge.

In discrete domains, rely on monotonicity and well-foundedness.

Well-founded order: An order that has no infinite ascending chain (i.e., sequence of

elements a0 < a1 < a2 < · · · where there is no maximum)

Monotonicity: Successive iterations produce larger values with respect to the order, i.e.,

rhs|soli ≥ soli
Result: Start with an initial guess S0, note Si = rhs|Si−1 .

Due to monotonicity, Si ≥ Si−1, and
by well-foundedness, the chain S0, S1, . . . can’t go on forever.
Hence iteration must converge, i.e., ∃k ∀i > k Si = Sk

12 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Convergence

Convergence is a major concern in iterative methods

For real-values variables, need to start close enough to the solution, or else the iterative

procedure may not converge.

In discrete domains, rely on monotonicity and well-foundedness.

Well-founded order: An order that has no infinite ascending chain (i.e., sequence of

elements a0 < a1 < a2 < · · · where there is no maximum)

Monotonicity: Successive iterations produce larger values with respect to the order, i.e.,

rhs|soli ≥ soli
Result: Start with an initial guess S0, note Si = rhs|Si−1 .

Due to monotonicity, Si ≥ Si−1, and
by well-foundedness, the chain S0, S1, . . . can’t go on forever.
Hence iteration must converge, i.e., ∃k ∀i > k Si = Sk

13 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Convergence

Convergence is a major concern in iterative methods

For real-values variables, need to start close enough to the solution, or else the iterative

procedure may not converge.

In discrete domains, rely on monotonicity and well-foundedness.

Well-founded order: An order that has no infinite ascending chain (i.e., sequence of

elements a0 < a1 < a2 < · · · where there is no maximum)

Monotonicity: Successive iterations produce larger values with respect to the order, i.e.,

rhs|soli ≥ soli
Result: Start with an initial guess S0, note Si = rhs|Si−1 .

Due to monotonicity, Si ≥ Si−1, and
by well-foundedness, the chain S0, S1, . . . can’t go on forever.
Hence iteration must converge, i.e., ∃k ∀i > k Si = Sk

14 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Convergence

Convergence is a major concern in iterative methods

For real-values variables, need to start close enough to the solution, or else the iterative

procedure may not converge.

In discrete domains, rely on monotonicity and well-foundedness.

Well-founded order: An order that has no infinite ascending chain (i.e., sequence of

elements a0 < a1 < a2 < · · · where there is no maximum)

Monotonicity: Successive iterations produce larger values with respect to the order, i.e.,

rhs|soli ≥ soli
Result: Start with an initial guess S0, note Si = rhs|Si−1 .

Due to monotonicity, Si ≥ Si−1, and
by well-foundedness, the chain S0, S1, . . . can’t go on forever.
Hence iteration must converge, i.e., ∃k ∀i > k Si = Sk

15 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Convergence

Convergence is a major concern in iterative methods

For real-values variables, need to start close enough to the solution, or else the iterative

procedure may not converge.

In discrete domains, rely on monotonicity and well-foundedness.

Well-founded order: An order that has no infinite ascending chain (i.e., sequence of

elements a0 < a1 < a2 < · · · where there is no maximum)

Monotonicity: Successive iterations produce larger values with respect to the order, i.e.,

rhs|soli ≥ soli
Result: Start with an initial guess S0, note Si = rhs|Si−1 .

Due to monotonicity, Si ≥ Si−1, and

by well-foundedness, the chain S0, S1, . . . can’t go on forever.
Hence iteration must converge, i.e., ∃k ∀i > k Si = Sk

16 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Convergence

Convergence is a major concern in iterative methods

For real-values variables, need to start close enough to the solution, or else the iterative

procedure may not converge.

In discrete domains, rely on monotonicity and well-foundedness.

Well-founded order: An order that has no infinite ascending chain (i.e., sequence of

elements a0 < a1 < a2 < · · · where there is no maximum)

Monotonicity: Successive iterations produce larger values with respect to the order, i.e.,

rhs|soli ≥ soli
Result: Start with an initial guess S0, note Si = rhs|Si−1 .

Due to monotonicity, Si ≥ Si−1, and
by well-foundedness, the chain S0, S1, . . . can’t go on forever.

Hence iteration must converge, i.e., ∃k ∀i > k Si = Sk

17 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Convergence

Convergence is a major concern in iterative methods

For real-values variables, need to start close enough to the solution, or else the iterative

procedure may not converge.

In discrete domains, rely on monotonicity and well-foundedness.

Well-founded order: An order that has no infinite ascending chain (i.e., sequence of

elements a0 < a1 < a2 < · · · where there is no maximum)

Monotonicity: Successive iterations produce larger values with respect to the order, i.e.,

rhs|soli ≥ soli
Result: Start with an initial guess S0, note Si = rhs|Si−1 .

Due to monotonicity, Si ≥ Si−1, and
by well-foundedness, the chain S0, S1, . . . can’t go on forever.
Hence iteration must converge, i.e., ∃k ∀i > k Si = Sk

18 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Role of Iterative Solutions

Fixpoint iteration resembles an inductive construction

S0 is the base case, Si construction from Si−1 is the induction step.

Drawback of explicit fixpoint iteration: hard to analyze the number of iterations, and
hence the runtime complexity

So, algorithms tend to rely on inductive, bottom-up constructions with enough
detail to reason about runtime.

Fixpoint iteration thus serves two main purposes:

When it is possible to bound its complexity in advance, e.g., non-recursive definitions

As an intermediate step that can be manually analyzed to uncover inductive structure

explicitly.

19 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Role of Iterative Solutions

Fixpoint iteration resembles an inductive construction

S0 is the base case, Si construction from Si−1 is the induction step.

Drawback of explicit fixpoint iteration: hard to analyze the number of iterations, and
hence the runtime complexity

So, algorithms tend to rely on inductive, bottom-up constructions with enough
detail to reason about runtime.

Fixpoint iteration thus serves two main purposes:

When it is possible to bound its complexity in advance, e.g., non-recursive definitions

As an intermediate step that can be manually analyzed to uncover inductive structure

explicitly.

20 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Role of Iterative Solutions

Fixpoint iteration resembles an inductive construction

S0 is the base case, Si construction from Si−1 is the induction step.

Drawback of explicit fixpoint iteration: hard to analyze the number of iterations, and
hence the runtime complexity

So, algorithms tend to rely on inductive, bottom-up constructions with enough
detail to reason about runtime.

Fixpoint iteration thus serves two main purposes:

When it is possible to bound its complexity in advance, e.g., non-recursive definitions

As an intermediate step that can be manually analyzed to uncover inductive structure

explicitly.

21 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Role of Iterative Solutions

Fixpoint iteration resembles an inductive construction

S0 is the base case, Si construction from Si−1 is the induction step.

Drawback of explicit fixpoint iteration: hard to analyze the number of iterations, and
hence the runtime complexity

So, algorithms tend to rely on inductive, bottom-up constructions with enough
detail to reason about runtime.

Fixpoint iteration thus serves two main purposes:

When it is possible to bound its complexity in advance, e.g., non-recursive definitions

As an intermediate step that can be manually analyzed to uncover inductive structure

explicitly.

22 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Role of Iterative Solutions

Fixpoint iteration resembles an inductive construction

S0 is the base case, Si construction from Si−1 is the induction step.

Drawback of explicit fixpoint iteration: hard to analyze the number of iterations, and
hence the runtime complexity

So, algorithms tend to rely on inductive, bottom-up constructions with enough
detail to reason about runtime.

Fixpoint iteration thus serves two main purposes:

When it is possible to bound its complexity in advance, e.g., non-recursive definitions

As an intermediate step that can be manually analyzed to uncover inductive structure

explicitly.

23 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Role of Iterative Solutions

Fixpoint iteration resembles an inductive construction

S0 is the base case, Si construction from Si−1 is the induction step.

Drawback of explicit fixpoint iteration: hard to analyze the number of iterations, and
hence the runtime complexity

So, algorithms tend to rely on inductive, bottom-up constructions with enough
detail to reason about runtime.

Fixpoint iteration thus serves two main purposes:

When it is possible to bound its complexity in advance, e.g., non-recursive definitions

As an intermediate step that can be manually analyzed to uncover inductive structure

explicitly.

24 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Shortest Path Problems

Graphs with cycles: Natural example where the optimal substructure equations are recursive.

Single source: dv = minu|(u,v)∈E (du + luv)

All pairs: duv = minw|(w,v)∈E (duw + lwv)

or, alternatively, duv = minw∈V (duw + dwv)

Our study of shortest path algorithms is based on fixpoint formulation

Shows how different shortest path algorithms can be derived from this perspective.

Highlights the similarities between these algorithms, making them easier to
understand/remember.

25 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Shortest Path Problems

Graphs with cycles: Natural example where the optimal substructure equations are recursive.

Single source: dv = minu|(u,v)∈E (du + luv)

All pairs: duv = minw|(w,v)∈E (duw + lwv)

or, alternatively, duv = minw∈V (duw + dwv)

Our study of shortest path algorithms is based on fixpoint formulation

Shows how different shortest path algorithms can be derived from this perspective.

Highlights the similarities between these algorithms, making them easier to
understand/remember.

26 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Single-source shortest paths
For the source vertex s, ds = 0. For v ̸= s, we have the following equation that captures the

optimal substructure of the problem. We use the convention luu = 0 for all u, as it simplifies

the equation:
dv = minu|(u,v)∈E (du + luv)

Expressing edge lengths as a matrix, this equation becomes:

d1
d2
...
dj
...
dn


=



l11 l21 · · · ln1
l12 l22 · · · ln2
...

...
...

...
l1j l2j · · · ljn
...

...
...

...
l1n l2n · · · lnn





d1
d2
...
dj
...
dn


Matches the form of linear simultaneous equations, except that point-wise multiplication and

addition become the integer “+” and min operations respectively.
27 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Single-source shortest paths

SSP, written as a recursive matrix equation is:
D = LD

Now, solve this equation iteratively:

D0 = Z (Z is the column matrix consisting of all ∞ except ds = 0)

D1 = LZ

D2 = LD1 = L(LZ) = L2Z

Or, more generally, Di = LiZ

L is the generalized adjacency matrix, with entries being edge weights (aka edge lengths)
rather than booleans.

Side note: In this domain, multiplicative identity I is a matrix with zeroes on the main
diagonal, and∞ in all other places.

So, L = I+ L, and hence L∗ = limr→∞ Lr

28 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Single-source shortest paths

Recall the connection between paths and the entries in Li .

Thus, Di represents the shortest path using i or fewer edges!

Unless there are cycles with negative cost in the graph, all shortest paths must have
a length less than n, so:

Dn contains all of the shortest paths from the source vertex s

dni is the shortest path length from s to the vertex i.

Computing L× L takes O(n3), so overall SSP cost is O(n4).

29 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

SSP: Improving Efficiency of Matrix Formulation

Compute the product from right: (L× (L× · · · (L× Z) · · ·)
Each multiplication involves n× n and 1× n matrix, so takes O(n2) instead of O(n3) time.
Overall time reduced to O(n3).

To compute L× dj , enough to consider neighbors of j, and not all n vertices

d ij = mink|(k,j)∈E(d
i−1
k + lkj)

Computes each matrix multiplication in O(|E|) time, so we have an overall O(|E||V |)
algorithm.

We have stumbled onto the Bellman-Ford algorithm!

30 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Further Optimization on Iteration

d i
j = mink|(k,j)∈E(d i−1

k + lkj)

Optimization 1: If none of the dk ’s on the rhs changed in the previous iteration, then
d i
j will be the same as d i−1

j , so we can skip recomputing it in this iteration.

Can be an useful improvement in practice, but asymptotic complexity unchanged
from O(|V ||E|)

31 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Optimizing Iteration

d i
j = mink|(k,j)∈E(d i−1

k + lkj))

Optimization 2: Wait to update dj on account of dk on the rhs until dk ’s cost stabilizes

Avoids repeated propagation of min cost from k to j — instead propagation takes
place just once per edge, i.e., O(|E|) times

If all weights are non-negative, we can determine when costs have stabilized for a
vertex k
There must be at least r vertices whose shortest path from the source s uses r or fewer

edges.

In other words, if d ik has the rth lowest value, then d ik has stabilized if r ≤ i

Voila! We have Dijkstra’s Algorithm!

32 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Optimizing Iteration

d i
j = mink|(k,j)∈E(d i−1

k + lkj))

Optimization 2: Wait to update dj on account of dk on the rhs until dk ’s cost stabilizes

Avoids repeated propagation of min cost from k to j — instead propagation takes
place just once per edge, i.e., O(|E|) times
If all weights are non-negative, we can determine when costs have stabilized for a
vertex k
There must be at least r vertices whose shortest path from the source s uses r or fewer

edges.

In other words, if d ik has the rth lowest value, then d ik has stabilized if r ≤ i

Voila! We have Dijkstra’s Algorithm!

33 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Optimizing Iteration

d i
j = mink|(k,j)∈E(d i−1

k + lkj))

Optimization 2: Wait to update dj on account of dk on the rhs until dk ’s cost stabilizes

Avoids repeated propagation of min cost from k to j — instead propagation takes
place just once per edge, i.e., O(|E|) times
If all weights are non-negative, we can determine when costs have stabilized for a
vertex k
There must be at least r vertices whose shortest path from the source s uses r or fewer

edges.

In other words, if d ik has the rth lowest value, then d ik has stabilized if r ≤ i

Voila! We have Dijkstra’s Algorithm!
34 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

All pairs Shortest Path (I)

d i
uv = minw|(w,v)∈E(d i−1

uw + lwv)
Note that duv depends on duw , but not on any dxy , where x ̸= u.

So, solutions for dxy don’t affect duv .

i.e., we can solve a separate SSP, each with one of the vertices as source

i.e., we run Dijkstra’s |V | times, overall complexity O(|E||V | log |V |)

35 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

All pairs Shortest Path (I)

d i
uv = minw|(w,v)∈E(d i−1

uw + lwv)
Note that duv depends on duw , but not on any dxy , where x ̸= u.

So, solutions for dxy don’t affect duv .

i.e., we can solve a separate SSP, each with one of the vertices as source

i.e., we run Dijkstra’s |V | times, overall complexity O(|E||V | log |V |)

36 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

All pairs Shortest Path (I)

d i
uv = minw|(w,v)∈E(d i−1

uw + lwv)
Note that duv depends on duw , but not on any dxy , where x ̸= u.

So, solutions for dxy don’t affect duv .

i.e., we can solve a separate SSP, each with one of the vertices as source

i.e., we run Dijkstra’s |V | times, overall complexity O(|E||V | log |V |)

37 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

All pairs Shortest Path (I)

d i
uv = minw|(w,v)∈E(d i−1

uw + lwv)
Note that duv depends on duw , but not on any dxy , where x ̸= u.

So, solutions for dxy don’t affect duv .

i.e., we can solve a separate SSP, each with one of the vertices as source

i.e., we run Dijkstra’s |V | times, overall complexity O(|E||V | log |V |)

38 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

All pairs Shortest Path (II)

d i
uv = minw∈E (d i−1

uw + d i−1
wv)

Matrix formulation:
D = D×D

with D0 = L.
Iterative formulation of the above equation yields

Di = L2i

We need only consider paths of length ≤ n, so stop at i = log n. Thus, overall
complexity is O(n3 log n), as each step requires O(n3) multiplication.
We have just uncovered a variant of Floyd-Warshall algorithm!

Typically used with matrix-multiplication based formulation.

Matches ASP I complexity for dense graphs (|E| = Θ(|V |2))

39 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

All pairs Shortest Path (II)

d i
uv = minw∈E (d i−1

uw + d i−1
wv)

Matrix formulation:
D = D×D

with D0 = L.
Iterative formulation of the above equation yields

Di = L2i

We need only consider paths of length ≤ n, so stop at i = log n. Thus, overall
complexity is O(n3 log n), as each step requires O(n3) multiplication.
We have just uncovered a variant of Floyd-Warshall algorithm!

Typically used with matrix-multiplication based formulation.

Matches ASP I complexity for dense graphs (|E| = Θ(|V |2))
40 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Further Improving ASP II

Each step has O(n3) complexity as it considers all (u,w, v) combinations

Note: Blind fixpoint
iteration “breaks” recursion by limiting path length.

Converts duv into d iuv where i is the path length

Worked well for SSP & ASP I, not so well for ASP II

Can we break cycles by limiting something else, say, vertices on the path?

Floyd-Warshall: Define dkuv as the shortest path from u to v that only uses intermediate vertices

1 to k.
dkuv = min(dk−1

uv , dk−1
uk + dk−1

kv)

Complexity: Need n iterations to consider k = 1, . . . , n but each iteration considers only n2

pairs, so overall runtime becomes O(n3)

41 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Further Improving ASP II

Each step has O(n3) complexity as it considers all (u,w, v) combinations Note: Blind fixpoint
iteration “breaks” recursion by limiting path length.

Converts duv into d iuv where i is the path length

Worked well for SSP & ASP I, not so well for ASP II

Can we break cycles by limiting something else, say, vertices on the path?

Floyd-Warshall: Define dkuv as the shortest path from u to v that only uses intermediate vertices

1 to k.
dkuv = min(dk−1

uv , dk−1
uk + dk−1

kv)

Complexity: Need n iterations to consider k = 1, . . . , n but each iteration considers only n2

pairs, so overall runtime becomes O(n3)

42 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Further Improving ASP II

Each step has O(n3) complexity as it considers all (u,w, v) combinations Note: Blind fixpoint
iteration “breaks” recursion by limiting path length.

Converts duv into d iuv where i is the path length

Worked well for SSP & ASP I, not so well for ASP II

Can we break cycles by limiting something else, say, vertices on the path?

Floyd-Warshall: Define dkuv as the shortest path from u to v that only uses intermediate vertices

1 to k.
dkuv = min(dk−1

uv , dk−1
uk + dk−1

kv)

Complexity: Need n iterations to consider k = 1, . . . , n but each iteration considers only n2

pairs, so overall runtime becomes O(n3)

43 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Further Improving ASP II

Each step has O(n3) complexity as it considers all (u,w, v) combinations Note: Blind fixpoint
iteration “breaks” recursion by limiting path length.

Converts duv into d iuv where i is the path length

Worked well for SSP & ASP I, not so well for ASP II

Can we break cycles by limiting something else, say, vertices on the path?

Floyd-Warshall: Define dkuv as the shortest path from u to v that only uses intermediate vertices

1 to k.
dkuv = min(dk−1

uv , dk−1
uk + dk−1

kv)

Complexity: Need n iterations to consider k = 1, . . . , n but each iteration considers only n2

pairs, so overall runtime becomes O(n3)

44 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Further Improving ASP II

Each step has O(n3) complexity as it considers all (u,w, v) combinations Note: Blind fixpoint
iteration “breaks” recursion by limiting path length.

Converts duv into d iuv where i is the path length

Worked well for SSP & ASP I, not so well for ASP II

Can we break cycles by limiting something else, say, vertices on the path?

Floyd-Warshall: Define dkuv as the shortest path from u to v that only uses intermediate vertices

1 to k.
dkuv = min(dk−1

uv , dk−1
uk + dk−1

kv)

Complexity: Need n iterations to consider k = 1, . . . , n but each iteration considers only n2

pairs, so overall runtime becomes O(n3)

45 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Summary

A versatile, robust technique to solve optimization problems

Key step: Identify optimal substructure in the form of an equation for optimal cost

If equations are non-recursive, then either

identify underlying DAG, compute costs in topological order, or,

write down a memoized recursive procedure

For recursive equations, “break” recursion by introducing additional parameters.

A fixpoint iteration can help expose such parameters.

Remember the choices made while computing the optimal cost, use these to
construct optimal solution.

46 / 47

Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Summary

A versatile, robust technique to solve optimization problems

Key step: Identify optimal substructure in the form of an equation for optimal cost

If equations are non-recursive, then either

identify underlying DAG, compute costs in topological order, or,

write down a memoized recursive procedure

For recursive equations, “break” recursion by introducing additional parameters.

A fixpoint iteration can help expose such parameters.

Remember the choices made while computing the optimal cost, use these to
construct optimal solution.

47 / 47

	Fixpoints & Shortest Paths
	Iterative Solving
	Shortest Path
	SSP
	ASP I
	ASP II

