• The crux of a dynamic programming solution: set up equation to captures a problem's optimal substructure.

• The crux of a dynamic programming solution: set up equation to captures a problem's optimal substructure.

The equation implies dependencies on subproblem solutions.

- The crux of a dynamic programming solution: set up equation to captures a problem's optimal substructure.
- The equation implies dependencies on subproblem solutions.
- Dynamic programming algorithm: finds a schedule that respects these dependencies

- The crux of a dynamic programming solution: set up equation to captures a problem's optimal substructure.
 - The equation implies dependencies on subproblem solutions.
- Dynamic programming algorithm: finds a schedule that respects these dependencies
- Typically, dependencies form a DAG: its topological sort yields the right schedule

- The crux of a dynamic programming solution: set up equation to captures a problem's optimal substructure.
 - The equation implies dependencies on subproblem solutions.
- Dynamic programming algorithm: finds a schedule that respects these dependencies
- Typically, dependencies form a DAG: its topological sort yields the right schedule
- Cyclic dependencies: What if dependencies don't form a DAG, but is a general graph.

- The crux of a dynamic programming solution: set up equation to captures a problem's optimal substructure.
 - The equation implies dependencies on subproblem solutions.
- Dynamic programming algorithm: finds a schedule that respects these dependencies
- Typically, dependencies form a DAG: its topological sort yields the right schedule
- Cyclic dependencies: What if dependencies don't form a DAG, but is a general graph.
- Key Idea: Use iterative techniques to solve (recursive) equations

Fixpoints

- A fixpoint is a solution to an equation:
- Substitute the solution on the rhs, it yields the lhs.

Fixpoints

- A fixpoint is a solution to an equation:
- Substitute the solution on the rhs, it yields the lhs.
- Example 1: $y = y^2 12$.
 - A fixpoint is y = 4:

$$y = y^2 - 12 |_{y=4} = 4^2 - 12 = 4$$

i.e., substituting y = 4 on the rhs returns the same value for y.

• A second fix point is y = -3

Fixpoints (2)

- A fixpoint is a solution to an equation:
 - Example 2: 7x = 2y 4, $2xy = 2x^3 + 2y + x$.
 - First, rewrite it to expose the fixpoint structure better:

$$x = (2y - 4)/7, y = x^2 + y/x + 0.5$$

One fixpoint is x = 2, y = 9.

$$x = (2y - 4)/7 |_{x=2,y=9} = (18 - 4)/7 = 2$$

 $y = x^2 + y/x + 0.5 |_{x=2,y=9} = 2^2 + 9/2 + 0.5 = 9$

Again, we get the same values after substitution, i.e., a fixpoint.

Fixpoints (2)

- A fixpoint is a solution to an equation:
 - Example 2: 7x = 2y 4, $2xy = 2x^3 + 2y + x$.
 - First, rewrite it to expose the fixpoint structure better:

$$x = (2y - 4)/7, y = x^2 + y/x + 0.5$$

One fixpoint is x = 2, y = 9.

$$x = (2y - 4)/7 |_{x=2,y=9} = (18 - 4)/7 = 2$$

 $y = x^2 + y/x + 0.5 |_{x=2,y=9} = 2^2 + 9/2 + 0.5 = 9$

Again, we get the same values after substitution, i.e., a fixpoint.

• The term "fixpoint" emphasizes an iterative strategy.

Fixpoints (2)

- A fixpoint is a solution to an equation:
 - Example 2: 7x = 2y 4, $2xy = 2x^3 + 2y + x$.
 - First, rewrite it to expose the fixpoint structure better:

$$x = (2y - 4)/7, y = x^2 + y/x + 0.5$$

One fixpoint is x = 2, y = 9.

$$x = (2y - 4)/7 |_{x=2,y=9} = (18 - 4)/7 = 2$$

 $y = x^2 + y/x + 0.5 |_{x=2,y=9} = 2^2 + 9/2 + 0.5 = 9$

Again, we get the same values after substitution, i.e., a fixpoint.

- The term "fixpoint" emphasizes an iterative strategy.
- Example techniques: Gauss-Seidel method (linear system of equations), Newton's method (finding roots), ...

- Convergence is a major concern in iterative methods
 - For real-values variables, need to start close enough to the solution, or else the iterative procedure may not converge.

- Convergence is a major concern in iterative methods
 - For real-values variables, need to start close enough to the solution, or else the iterative procedure may not converge.
 - *In discrete domains*, rely on *monotonicity* and *well-foundedness*.

- Convergence is a major concern in iterative methods
 - For real-values variables, need to start close enough to the solution, or else the iterative procedure may not converge.
 - In discrete domains, rely on monotonicity and well-foundedness.
 - Well-founded order: An order that has no infinite ascending chain (i.e., sequence of elements $a_0 < a_1 < a_2 < \cdots$ where there is no maximum)

- Convergence is a major concern in iterative methods
 - For real-values variables, need to start close enough to the solution, or else the iterative procedure may not converge.
 - In discrete domains, rely on monotonicity and well-foundedness.

Well-founded order: An order that has no infinite ascending chain (i.e., sequence of elements $a_0 < a_1 < a_2 < \cdots$ where there is no maximum)

Monotonicity: Successive iterations produce larger values with respect to the order, i.e., $rhs|_{sol_i} \geq sol_i$

Result: Start with an initial guess S^0 , note $S^i = rhs|_{S^{i-1}}$.

- Convergence is a major concern in iterative methods
 - For real-values variables, need to start close enough to the solution, or else the iterative procedure may not converge.
 - In discrete domains, rely on monotonicity and well-foundedness.

Well-founded order: An order that has no infinite ascending chain (i.e., sequence of elements $a_0 < a_1 < a_2 < \cdots$ where there is no maximum)

Monotonicity: Successive iterations produce larger values with respect to the order, i.e., $rhs|_{sol_i} \geq sol_i$

Result: Start with an initial guess S^0 , note $S^i = rhs|_{S^{i-1}}$.

• Due to monotonicity, $S^i \ge S^{i-1}$, and

- Convergence is a major concern in iterative methods
 - For real-values variables, need to start close enough to the solution, or else the iterative procedure may not converge.
 - In discrete domains, rely on monotonicity and well-foundedness.
 - Well-founded order: An order that has no infinite ascending chain (i.e., sequence of elements $a_0 < a_1 < a_2 < \cdots$ where there is no maximum)
 - Monotonicity: Successive iterations produce larger values with respect to the order, i.e., $rhs|_{sol_i} \geq sol_i$

Result: Start with an initial guess S^0 , note $S^i = rhs|_{S^{i-1}}$.

- Due to monotonicity, $S^i \ge S^{i-1}$, and
- by well-foundedness, the chain S^0, S^1, \ldots can't go on forever.

- Convergence is a major concern in iterative methods
 - For real-values variables, need to start close enough to the solution, or else the iterative procedure may not converge.
 - In discrete domains, rely on monotonicity and well-foundedness.
 - Well-founded order: An order that has no infinite ascending chain (i.e., sequence of elements $a_0 < a_1 < a_2 < \cdots$ where there is no maximum)
 - Monotonicity: Successive iterations produce larger values with respect to the order, i.e., $rhs|_{sol_i} \geq sol_i$

Result: Start with an initial guess S^0 , note $S^i = rhs|_{S^{i-1}}$.

- Due to monotonicity, $S^i \geq S^{i-1}$, and
- by well-foundedness, the chain S^0, S^1, \ldots can't go on forever.
- Hence iteration must converge, i.e., $\exists k \ \forall i > k \ S^i = S^k$

- Fixpoint iteration resembles an inductive construction
 - S^0 is the base case, S^i construction from S^{i-1} is the induction step.

- Fixpoint iteration resembles an inductive construction
 - S^0 is the base case, S^i construction from S^{i-1} is the induction step.
- Drawback of *explicit fixpoint iteration:* hard to analyze the number of iterations, and hence the runtime complexity

- Fixpoint iteration resembles an inductive construction
 - S^0 is the base case, S^i construction from S^{i-1} is the induction step.
- Drawback of explicit fixpoint iteration: hard to analyze the number of iterations, and hence the runtime complexity
- So, algorithms tend to rely on inductive, bottom-up constructions with enough detail to reason about runtime.

- Fixpoint iteration resembles an inductive construction
 - S^0 is the base case, S^i construction from S^{i-1} is the induction step.
- Drawback of explicit fixpoint iteration: hard to analyze the number of iterations, and hence the runtime complexity
- So, algorithms tend to rely on inductive, bottom-up constructions with enough detail to reason about runtime.
- Fixpoint iteration thus serves two main purposes:

- Fixpoint iteration resembles an inductive construction
 - S^0 is the base case, S^i construction from S^{i-1} is the induction step.
- Drawback of explicit fixpoint iteration: hard to analyze the number of iterations, and hence the runtime complexity
- So, algorithms tend to rely on inductive, bottom-up constructions with enough detail to reason about runtime.
- Fixpoint iteration thus serves two main purposes:
 - When it is possible to bound its complexity in advance, e.g., non-recursive definitions

- Fixpoint iteration resembles an inductive construction
 - S^0 is the base case, S^i construction from S^{i-1} is the induction step.
- Drawback of explicit fixpoint iteration: hard to analyze the number of iterations, and hence the runtime complexity
- So, algorithms tend to rely on inductive, bottom-up constructions with enough detail to reason about runtime.
- Fixpoint iteration thus serves two main purposes:
 - When it is possible to bound its complexity in advance, e.g., non-recursive definitions
 - As an intermediate step that can be manually analyzed to uncover inductive structure explicitly.

Shortest Path Problems

Graphs with cycles: Natural example where the optimal substructure equations are recursive.

Single source: $d_v = min_{u|(u,v) \in E} (d_u + l_{uv})$

All pairs: $d_{uv} = min_{w|(w,v) \in E} (d_{uw} + l_{wv})$ or, alternatively, $d_{uv} = min_{w \in V} (d_{uw} + d_{wv})$

Shortest Path Problems

Graphs with cycles: Natural example where the optimal substructure equations are recursive.

Single source:
$$d_v = min_{u|(u,v) \in E} (d_u + l_{uv})$$

All pairs:
$$d_{uv} = min_{w|(w,v) \in E} (d_{uw} + l_{wv})$$

or, alternatively, $d_{uv} = min_{w \in V} (d_{uw} + d_{wv})$

Our study of shortest path algorithms is based on fixpoint formulation

- Shows how different shortest path algorithms can be derived from this perspective.
- Highlights the similarities between these algorithms, making them easier to understand/remember.

Single-source shortest paths

For the source vertex s, $d_s = 0$. For $v \neq s$, we have the following equation that captures the optimal substructure of the problem. We use the convention $l_{uu} = 0$ for all u, as it simplifies the equation:

$$d_v = min_{u|(u,v) \in E} (d_u + l_{uv})$$

Expressing edge lengths as a matrix, this equation becomes:

$$\begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_j \\ \vdots \\ d_n \end{bmatrix} = \begin{bmatrix} l_{11} & l_{21} & \cdots & l_{n1} \\ l_{12} & l_{22} & \cdots & l_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ l_{1j} & l_{2j} & \cdots & l_{jn} \\ \vdots & \vdots & \vdots & \vdots \\ l_{1n} & l_{2n} & \cdots & l_{nn} \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_j \\ \vdots \\ d_n \end{bmatrix}$$

Matches the form of linear simultaneous equations, except that point-wise multiplication and addition become the integer "+" and *min* operations respectively.

Single-source shortest paths

SSP, written as a recursive matrix equation is:

$$D = \mathbf{L}D$$

Now, solve this equation iteratively:

$$D^0 = Z$$
 (Z is the column matrix consisting of all ∞ except $d_s = 0$)
 $D^1 = LZ$
 $D^2 = LD^1 = L(LZ) = L^2Z$

Or, more generally, $D^i = \mathbf{L}^i Z$

- L is the generalized adjacency matrix, with entries being edge weights (aka edge lengths) rather than booleans.
- Side note: In this domain, multiplicative identity I is a matrix with zeroes on the main diagonal, and ∞ in all other places.
 - So, L = I + L, and hence $L^* = \lim_{r \to \infty} L^r$

Single-source shortest paths

- Recall the connection between paths and the entries in \mathbf{L}^{i} .
- Thus, D^i represents the shortest path using i or fewer edges!
- Unless there are cycles with negative cost in the graph, all shortest paths must have a length less than *n*, so:
- D^n contains all of the shortest paths from the source vertex s
- d_i^n is the shortest path length from s to the vertex i.

Computing $\mathbf{L} \times \mathbf{L}$ takes $O(n^3)$, so overall SSP cost is $O(n^4)$.

- Compute the product from right: $(\mathbf{L} \times (\mathbf{L} \times \cdots (\mathbf{L} \times Z) \cdots))$
 - Each multiplication involves $n \times n$ and $1 \times n$ matrix, so takes $O(n^2)$ instead of $O(n^3)$ time.
 - Overall time reduced to $O(n^3)$.
- To compute $\mathbf{L} \times d_j$, enough to consider neighbors of j, and not all n vertices

$$d_j^i = \min_{k|(k,j)\in E} (d_k^{i-1} + l_{kj})$$

- Computes each matrix multiplication in O(|E|) time, so we have an overall O(|E||V|) algorithm.
- We have stumbled onto the Bellman-Ford algorithm!

Further Optimization on Iteration

$$d_j^i = min_{k|(k,j)\in E}(d_k^{i-1} + l_{kj})$$

- Optimization 1: If none of the d_k 's on the rhs changed in the previous iteration, then d_j^i will be the same as d_j^{i-1} , so we can skip recomputing it in this iteration.
- Can be an useful improvement in practice, but asymptotic complexity unchanged from O(|V||E|)

Optimizing Iteration

$$d_j^i = min_{k|(k,j) \in E}(d_k^{i-1} + l_{kj}))$$

Optimization 2: Wait to update d_j on account of d_k on the rhs until d_k 's cost stabilizes

• Avoids repeated propagation of min cost from k to j — instead propagation takes place just once per edge, i.e., O(|E|) times

Optimizing Iteration

$$d_j^i = min_{k|(k,j) \in E}(d_k^{i-1} + l_{kj}))$$

Optimization 2: Wait to update d_j on account of d_k on the rhs until d_k 's cost stabilizes

- Avoids repeated propagation of min cost from k to j instead propagation takes place just once per edge, i.e., O(|E|) times
- ullet If all weights are non-negative, we can determine when costs have stabilized for a vertex k
 - There must be at least r vertices whose shortest path from the source s uses r or fewer edges.
 - In other words, if d_k^i has the rth lowest value, then d_k^i has stabilized if $r \leq i$

Optimizing Iteration

$$d_j^i = min_{k|(k,j) \in E}(d_k^{i-1} + l_{kj}))$$

Optimization 2: Wait to update d_i on account of d_k on the rhs until d_k 's cost stabilizes

- Avoids repeated propagation of min cost from k to j instead propagation takes place just once per edge, i.e., O(|E|) times
- If all weights are non-negative, we can determine when costs have stabilized for a vertex k
 - There must be at least r vertices whose shortest path from the source s uses r or fewer edges.
 - In other words, if d_{i}^{i} has the rth lowest value, then d_{i}^{i} has stabilized if r < i

Voila! We have Dijkstra's Algorithm!

$$d_{uv}^{i} = min_{w|(w,v) \in E}(d_{uw}^{i-1} + l_{wv})$$

• Note that d_{uv} depends on d_{uw} , but not on any d_{xy} , where $x \neq u$.

$$d_{uv}^i = min_{w|(w,v) \in E}(d_{uw}^{i-1} + l_{wv})$$

- Note that d_{uv} depends on d_{uw} , but not on any d_{xy} , where $x \neq u$.
- So, solutions for d_{xy} don't affect d_{uv} .

$$d_{uv}^{i} = min_{w|(w,v) \in E}(d_{uw}^{i-1} + l_{wv})$$

- Note that d_{uv} depends on d_{uw} , but not on any d_{xy} , where $x \neq u$.
- So, solutions for d_{xy} don't affect d_{uv} .
- i.e., we can solve a separate SSP, each with one of the vertices as source

$$d_{uv}^{i} = min_{w|(w,v) \in E}(d_{uw}^{i-1} + l_{wv})$$

- Note that d_{uv} depends on d_{uw} , but not on any d_{xy} , where $x \neq u$.
- So, solutions for d_{xy} don't affect d_{uv} .
- i.e., we can solve a separate SSP, each with one of the vertices as source
- i.e., we run Dijkstra's |V| times, overall complexity $O(|E||V|\log |V|)$

$$d_{uv}^{i} = min_{w \in E} \left(d_{uw}^{i-1} + d_{wv}^{i-1} \right)$$

Matrix formulation:

$$\mathbf{D} = \mathbf{D} \times \mathbf{D}$$

with $\mathbf{D}^0 = \mathbf{L}$.

Iterative formulation of the above equation yields

$$\mathbf{D}^i = \mathbf{L}^{2^i}$$

We need only consider paths of length $\leq n$, so stop at $i = \log n$. Thus, overall complexity is $O(n^3 \log n)$, as each step requires $O(n^3)$ multiplication.

We have just uncovered a variant of Floyd-Warshall algorithm!

• Typically used with matrix-multiplication based formulation.

$$d_{uv}^{i} = min_{w \in E} \left(d_{uw}^{i-1} + d_{wv}^{i-1} \right)$$

Matrix formulation:

$$\mathbf{D} = \mathbf{D} \times \mathbf{D}$$

with $\mathbf{D}^0 = \mathbf{L}$.

Iterative formulation of the above equation yields

$$\mathbf{D}^i = \mathbf{L}^{2^i}$$

We need only consider paths of length $\leq n$, so stop at $i = \log n$. Thus, overall complexity is $O(n^3 \log n)$, as each step requires $O(n^3)$ multiplication.

We have just uncovered a variant of Floyd-Warshall algorithm!

• Typically used with matrix-multiplication based formulation.

Matches ASP I complexity for dense graphs ($|E| = \Theta(|V|^2)$)

Each step has $O(n^3)$ complexity as it considers all (u, w, v) combinations

Each step has $O(n^3)$ complexity as it considers all (u, w, v) combinations *Note:* Blind fixpoint iteration "breaks" recursion by limiting path length.

- Converts d_{uv} into d_{uv}^i where i is the path length
- Worked well for SSP & ASP I, not so well for ASP II

Each step has $O(n^3)$ complexity as it considers all (u, w, v) combinations *Note:* Blind fixpoint iteration "breaks" recursion by limiting path length.

- Converts d_{uv} into d_{uv}^i where i is the path length
- Worked well for SSP & ASP I, not so well for ASP II

Can we break cycles by limiting something else, say, vertices on the path?

Each step has $O(n^3)$ complexity as it considers all (u, w, v) combinations *Note:* Blind fixpoint iteration "breaks" recursion by limiting path length.

- Converts d_{uv} into d_{uv}^i where i is the path length
- Worked well for SSP & ASP I, not so well for ASP II

Can we break cycles by limiting something else, say, vertices on the path?

Floyd-Warshall: Define d_{uv}^k as the shortest path from u to v that only uses intermediate vertices 1 to k.

$$d_{uv}^{k} = min(d_{uv}^{k-1}, d_{uk}^{k-1} + d_{kv}^{k-1})$$

Each step has $O(n^3)$ complexity as it considers all (u, w, v) combinations *Note:* Blind fixpoint iteration "breaks" recursion by limiting path length.

- Converts d_{uv} into d_{uv}^i where i is the path length
- Worked well for SSP & ASP I, not so well for ASP II

Can we break cycles by limiting something else, say, vertices on the path?

Floyd-Warshall: Define d_{uv}^k as the shortest path from u to v that only uses intermediate vertices 1 to k.

$$d_{uv}^{k} = min(d_{uv}^{k-1}, d_{uk}^{k-1} + d_{kv}^{k-1})$$

Complexity: Need *n* iterations to consider k = 1, ..., n but each iteration considers only n^2 pairs, so overall runtime becomes $O(n^3)$

Summary

- A versatile, robust technique to solve optimization problems
- Key step: Identify optimal substructure in the form of an equation for optimal cost

- A versatile, robust technique to solve optimization problems
- Key step: Identify optimal substructure in the form of an equation for optimal cost
- If equations are non-recursive, then either
 - identify underlying DAG, compute costs in topological order, or,
 - write down a memoized recursive procedure
- For recursive equations, "break" recursion by introducing additional parameters.
 - A fixpoint iteration can help expose such parameters.
- Remember the choices made while computing the optimal cost, use these to construct optimal solution.