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optimal substructure.
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optimal substructure.

The equation implies dependencies on subproblem solutions.
@ Dynamic programming algorithm: finds a schedule that respects these dependencies
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Dynamic Programming and Equation Solving

The crux of a dynamic programming solution: set up equation to captures a problem’s

optimal substructure.

The equation implies dependencies on subproblem solutions.

Dynamic programming algorithm: finds a schedule that respects these dependencies

Typically, dependencies form a DAG: its topological sort yields the right schedule

Cyclic dependencies: What if dependencies don’t form a DAG, but is a general graph.

Key Idea: Use iterative techniques to solve (recursive) equations
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e A fixpoint is a solution to an equation:

@ Substitute the solution on the rhs, it yields the lhs.
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e A fixpoint is a solution to an equation:

@ Substitute the solution on the rhs, it yields the lhs.

e Example 1: y = y* — 12.

e Afixpointisy = 4:
y=y’—12|,4s=4-12=4

i.e., substituting y = 4 on the rhs returns the same value for y.

e Asecond fix pointis y = —3
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Fixpoints (2)

@ A fixpoint is a solution to an equation:
o Example 2: 7x = 2y — 4,2xy = 2x3 + 2y + x.
o First, rewrite it to expose the fixpoint structure better:

x=2y—4)/7, y=x"+y/x+05
One fixpointis x =2,y = 9.
x=(2y —4)/7 |x=2y=0 = (18 —4)/7 =2
y=x"4y/x+05|zy—=2"+9/2+05=09

Again, we get the same values after substitution, i.e., a fixpoint.
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@ The term “fixpoint” emphasizes an iterative strategy.
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Fixpoints (2)

@ A fixpoint is a solution to an equation:
o Example 2: 7x = 2y — 4,2xy = 2x3 + 2y + x.
o First, rewrite it to expose the fixpoint structure better:
x=2y—4)/7, y=x"+y/x+05
One fixpointis x =2,y = 9.
x=(2y —4)/7 |x=2y=0 = (18 —4)/7 =2
y=x"4y/x+05|zy—=2"+9/2+05=09
Again, we get the same values after substitution, i.e., a fixpoint.

@ The term “fixpoint” emphasizes an iterative strategy.

o Example techniques: Gauss-Seidel method (linear system of equations), Newton’s

method (finding roots), ...
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e Convergence is a major concern in iterative methods

e For real-values variables, need to start close enough to the solution, or else the iterative

procedure may not converge.
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elements ay < a; < ap < --- where there is no maximum)
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Convergence

e Convergence is a major concern in iterative methods
o for real-values variables, need to start close enough to the solution, or else the iterative
procedure may not converge.
e In discrete domains, rely on monotonicity and well-foundedness.
Well-founded order: An order that has no infinite ascending chain (i.e., sequence of
elements ay < a; < ap < --- where there is no maximum)
Monotonicity: Successive iterations produce larger values with respect to the order, i.e.,
rhs|so, > sol;
Result: Start with an initial guess S°, note S = rhs|gi—1.
e Due to monotonicity, S’ > S'~', and
e by well-foundedness, the chain S°, S, ... can’t go on forever.

o Hence iteration must converge, i.e., 3k Vi > k S = sk
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@ Fixpoint iteration resembles an inductive construction

o S%is the base case, S’ construction from S'~ ' is the induction step.
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Role of Iterative Solutions

@ Fixpoint iteration resembles an inductive construction

o S’ is the base case, S’ construction from S'~' is the induction step.

e Drawback of explicit fixpoint iteration: hard to analyze the number of iterations, and

hence the runtime complexity

@ So, algorithms tend to rely on inductive, bottom-up constructions with enough

detail to reason about runtime.
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Role of Iterative Solutions

@ Fixpoint iteration resembles an inductive construction

o S’ is the base case, S’ construction from S'~' is the induction step.

e Drawback of explicit fixpoint iteration: hard to analyze the number of iterations, and

hence the runtime complexity

@ So, algorithms tend to rely on inductive, bottom-up constructions with enough

detail to reason about runtime.

e Fixpoint iteration thus serves two main purposes:
e When it is possible to bound its complexity in advance, e.g., non-recursive definitions
e As an intermediate step that can be manually analyzed to uncover inductive structure
explicitly.
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Graphs with cycles: Natural example where the optimal substructure equations are recursive.

Single source: d, = miny|(yv)ee (du + luy)

All pairs: dyy = miny(y,v)ee (duw + lwv)

or, alternatively, d,, = minycy (duw + duy)
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Shortest Path Problems

Graphs with cycles: Natural example where the optimal substructure equations are recursive.
Single source: d, = miny|(yv)er (du + L)

All pairs: dyy = miny(y,v)ee (duw + lwv)

or, alternatively, d,, = minyey (dyw + duy)

Our study of shortest path algorithms is based on fixpoint formulation

@ Shows how different shortest path algorithms can be derived from this perspective.

@ Highlights the similarities between these algorithms, making them easier to
understand/remember.
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Single-source shortest paths

For the source vertex s, d; = 0. For v # s, we have the following equation that captures the
optimal substructure of the problem. We use the convention [,, = 0 for all u, as it simplifies
the equation:

dy = miny|(uv)ee (du + luv)

Expressing edge lengths as a matrix, this equation becomes:

dT []1 [21 o [n1 d1
d2 [12 122 e [n2 d2
A R

L dn _ L [1n [2n o [nn 1 L dn _

Matches the form of linear simultaneous equations, except that point-wise multiplication and

addition become the integer “+” and min operations respectively.
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Single-source shortest paths

SSP, written as a recursive matrix equation is:

D=LD
Now, solve this equation iteratively:
D’ = z (Z is the column matrix consisting of all oo except d; = 0)
D' = LZ
D* = LD'=L(LZ)=LZ

Or, more generally, D' = L'Z

@ L is the generalized adjacency matrix, with entries being edge weights (aka edge lengths)
rather than booleans.

@ Side note: In this domain, multiplicative identity | is a matrix with zeroes on the main
diagonal, and oo in all other places.
e So,L=1+1L, and hence L* = lim,_o L"
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Single-source shortest paths

@ Recall the connection between paths and the entries in L.

Thus, D’ represents the shortest path using i or fewer edges!

Unless there are cycles with negative cost in the graph, all shortest paths must have

a length less than n, so:

e D" contains all of the shortest paths from the source vertex s

d! is the shortest path length from s to the vertex i.

Computing L x L takes O(n?), so overall SSP cost is O(n*).
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SSP: Improving Efficiency of Matrix Formulation

@ Compute the product from right: (L x (L x ---(L x Z)--+)
o Each multiplication involves n x nand 1 x n matrix, so takes O(n?) instead of O(n®) time.

o Overall time reduced to O(r?).

@ To compute L x d;, enough to consider neighbors of j, and not all n vertices

df = mink|(k,j)€E(d[ii1 + 1)

o Computes each matrix multiplication in O(|E|) time, so we have an overall O(|E||V|)

algorithm.

@ We have stumbled onto the Bellman-Ford algorithm!
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Further Optimization on Iteration

dji = mingyee(d] " + lj)

e Optimization 1: If none of the d,’s on the rhs changed in the previous iteration, then

dj will be the same as d;_1, so we can skip recomputing it in this iteration.

@ Can be an useful improvement in practice, but asymptotic complexity unchanged
from O(|V||E|)
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Optimizing Iteration

d; = ml‘l’lk‘(k,j)eE(d/i_1 + lkj))

Optimization 2: Wait to update d; on account of di on the rhs until d;’s cost stabilizes
@ Avoids repeated propagation of min cost from k to j — instead propagation takes

place just once per edge, i.e., O(|E|) times
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Optimizing Iteration

d; = ml‘l’lk‘(,l(,j)eE(d/i_1 + lkj))

Optimization 2: Wait to update d; on account of dy on the rhs until d;’s cost stabilizes
@ Avoids repeated propagation of min cost from k to j — instead propagation takes
place just once per edge, i.e., O(|E|) times
o If all weights are non-negative, we can determine when costs have stabilized for a

vertex k

e There must be at least r vertices whose shortest path from the source s uses r or fewer

edges.
o In other words, if d,i has the rth lowest value, then d,’; has stabilized if r < j
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Optimizing Iteration

d; = ml‘l’lk‘(,l(,j)eE(d/i_1 + lkj))

Optimization 2: Wait to update d; on account of dy on the rhs until d;’s cost stabilizes
@ Avoids repeated propagation of min cost from k to j — instead propagation takes
place just once per edge, i.e., O(|E|) times
o If all weights are non-negative, we can determine when costs have stabilized for a
vertex k

e There must be at least r vertices whose shortest path from the source s uses r or fewer

edges.

o In other words, if d,i has the rth lowest value, then d,’; has stabilized if r < j

Voila! We have Dijkstra’s Algorithm!
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dl';v = minw|(w,v)eE(d¢;1 + [W,,)
e Note that d,, depends on d,,, but not on any d,,, where x # u.

35/47



dzi:v = minw|(w,v)eE(d¢l;;1 + [W,,)
e Note that d,, depends on d,,, but not on any d,,, where x # u.

@ So, solutions for d,, don’t affect d,,.
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dzi:v = minw|(w,v)eE(d¢l;;1 + [W,,)
e Note that d,, depends on d,,, but not on any d,,, where x # u.

@ So, solutions for d,, don’t affect d,,.

@ i.e,, we can solve a separate SSP, each with one of the vertices as source
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All pairs Shortest Path (1)

dLi’v = minWKW’V)eE(dL;V] —|— lwv)
Note that d,, depends on d,,, but not on any d,,, where x # u.

So, solutions for d,, don’t affect d,,.
@ i.e., we can solve a separate SSP, each with one of the vertices as source

e i.e, we run Dijkstra’s | V| times, overall complexity O(|E||V|log |V])
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All pairs Shortest Path (1I)

dy, = minee (dy,' +d,.")
Matrix formulation:

D=DxD
with D = L.
Iterative formulation of the above equation yields
D' = L?

We need only consider paths of length < n, so stop at i = log n. Thus, overall
complexity is O(r’ log n), as each step requires O(n*) multiplication.
We have just uncovered a variant of Floyd-Warshall algorithm!

e Typically used with matrix-multiplication based formulation.
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All pairs Shortest Path (1I)

dy, = minee (dy,' +d,.")
Matrix formulation:

D=DxD
with D = L.
Iterative formulation of the above equation yields
D' = L?

We need only consider paths of length < n, so stop at i = log n. Thus, overall
complexity is O(r’ log n), as each step requires O(n*) multiplication.

We have just uncovered a variant of Floyd-Warshall algorithm!

e Typically used with matrix-multiplication based formulation.

Matches ASP | complexity for dense graphs (|E| = ©(|V|?))
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Each step has O(n®) complexity as it considers all (u, w, v) combinations

41/47



Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP 1 ASP Il

Further Improving ASP Il

Each step has O(n*) complexity as it considers all (u, w, v) combinations Note: Blind fixpoint

iteration “breaks” recursion by limiting path length.
@ Converts d,, into d’ where i is the path length

@ Worked well for SSP & ASP |, not so well for ASP II
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Further Improving ASP Il

Each step has O(n*) complexity as it considers all (u, w, v) combinations Note: Blind fixpoint

iteration “breaks” recursion by limiting path length.
@ Converts d,, into d’ where i is the path length

@ Worked well for SSP & ASP |, not so well for ASP II

Can we break cycles by limiting something else, say, vertices on the path?
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Further Improving ASP Il

Each step has O(n*) complexity as it considers all (u, w, v) combinations Note: Blind fixpoint

iteration “breaks” recursion by limiting path length.
@ Converts d,, into d’ where i is the path length

@ Worked well for SSP & ASP |, not so well for ASP II

Can we break cycles by limiting something else, say, vertices on the path?
Floyd-Warshall: Define d¥, as the shortest path from u to v that only uses intermediate vertices
1to k.

d¥, = min(ds ', d5 T+ d5T)

uv o Yyk
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Further Improving ASP Il

Each step has O(n*) complexity as it considers all (u, w, v) combinations Note: Blind fixpoint

iteration “breaks” recursion by limiting path length.
@ Converts d,, into d’ where i is the path length

@ Worked well for SSP & ASP |, not so well for ASP II

Can we break cycles by limiting something else, say, vertices on the path?
Floyd-Warshall: Define d¥, as the shortest path from u to v that only uses intermediate vertices
1to k.
di, = min(di;", dy" + di)
Complexity: Need n iterations to consider k = 1,. .., n but each iteration considers only n?

pairs, so overall runtime becomes O(n*)
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o A versatile, robust technique to solve optimization problems

o Key step: Identify optimal substructure in the form of an equation for optimal cost
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Summary

@ A versatile, robust technique to solve optimization problems

Key step: Identify optimal substructure in the form of an equation for optimal cost

If equations are non-recursive, then either

o identify underlying DAG, compute costs in topological order, or,

e write down a memoized recursive procedure

e For recursive equations, “break” recursion by introducing additional parameters.

o A fixpoint iteration can help expose such parameters.

@ Remember the choices made while computing the optimal cost, use these to

construct optimal solution.
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