FocusCheck: A Tool for Model Checking and
Debugging Sequential C Programs*

Curtis W. Keller!', Diptikalyan Saha?, Samik Basu', and Scott A. Smolka?

! Department of Computer Science, Iowa State University, Ames
Email:{cwkeller,sbasu}@cs.iastate.edu
2 Department of Computer Science, State University of New York, Stony Brook
Email:{dsaha,sas}@cs.sunysb.edu

Abstract. We present the FocusCheck model-checking tool for the ver-
ification and easy debugging of assertion violations in sequential C pro-
grams. The main functionalities of the tool are the ability to: (a) iden-
tify all minimum-recursion, loop-free counter-examples in a C program
using on-the-fly abstraction techniques; (b) extract focus-statement se-
quences (FSSs) from counter-examples, where a focus statement is one
whose execution directly or indirectly causes the violation underlying
a counter-example; (c¢) detect and discard infeasible counter-examples
via feasibility analysis of the corresponding FSSs; and (d) isolate pro-
gram segments that are most likely to harbor the erroneous statements
causing the counter-examples. FocusCheck is equipped with a smart
graphical user interface that provides various views of counter-examples
in terms of their FSSs, thereby enhancing usability and readability of
model-checking results.

1 Introduction

Software model checking typically follows a three-step, iterative process of ab-
straction, verification, and refinement [4, 1, 7]. First, given a program P, a finite-
state abstract version P’ of P is generated. Then, P’ is verified with respect to
the given property and a counter-example (sequence of program statements) is
generated should a violation occur. Finally, constraint solvers and/or theorem
provers are used to check whether the counter-example is feasible in the con-
crete program P; if not, the abstract program P’ is refined. The three steps are
iterated until a feasible counter-example is identified or the property is satisfied.

Counter-example feasibility analysis requires the user to understand the root-
cause of the counter-example, and subsequently isolate and debug the error in the
program. The presence of complex data and control structures in the program
can make such analysis an extremely tedious and time-consuming process.

To render counter-example analysis more tractable, we present the FocusCheck
model checker and debugger. FocusCheck takes C programs as input; using a
model checker written in XSB Prolog [8] for push-down systems, it identifies

* Research supported in part by ONR grant N000140110967

MODEL CHECKER

! R
E
. ; PDS A A
C Progrant - c N FEASIBILITY
A | Model A CHECKER
| G N : L Counter— FSSs
N S B Y |Examples CLPR
P L Z
U A !
u T =L E
T o IR
1 R T
—HY
Property ;

i
|
|
No feasible —= T ! -
8 Counter—Example ! ; CONSTRAINT |[™®
T Feasible FSSsw j : GENERATOR
|
P Assumptions— . !
u | !
T Neighborhood-= : - ERROR
of Error I ! LOCALIZER
! I
! 1
! I

LOCALIZER

FRONT-END 3 BACK-END

Fig. 1. Architecture of the FocusCheck tool.

in one pass all counter-examples (if any) in the program under investigation.
Generated counter-examples are analyzed to identify slices in the form of focus-
statement sequences (FSSs): it is the execution of the program statements in the
FSSs, and nothing else, that leads to the violation of property [3]. Feasible FSSs
are ranked such that those of higher rank are likely to be easier to understand
and debug than those of lower rank. Constraints on data variables in each FSS
are determined to allow the tool to zoom in on specific program segments that
are most likely to harbor the erroneous statements in the program.

2 Tool Description

In this section, we describe the main components of the FocusCheck model checker
and counter-example analyzer. Figure 1 presents the architecture of the tool.

Translating C-programs to push-down models. The translator uses the
CIL toolset [5] to transform C programs into XSB Prolog, from which push-down
system transitions of the form S — S’ are generated. Here S is the statement at
the top of stack which, when executed, is replaced by S’. Push-down systems are
a natural choice for accurately representing the control behavior of sequential
programs as they capture the exact call-return patterns such programs exhibit.

Model Checker. The core of the model checker, written in XSB Prolog, is
a reachability analyzer for push-down transition systems; this in turn is tightly
integrated with a slicer. A model of a program can exhibit infinite-state behavior
due to the presence of infinite-domain variables. A typical solution to such a
problem is to perform forward reachability from the initial state by leaving the

1: Lif (x> 100) { (a) uninterpreted variables: x, ¥y

2: if (y <50) { (b) counter-examples:

3: bigProcedurel(); [1,2,3,...,4], [1,2,6,...,7]
4: i=10; } (c) FSSs: [1,2,4], [1,2,7]

5: } else { (d) assumptions:

6: bigProcedure2(); [x>100, y<50],[x>100,y>=50]
7: i=10; 2} } ... (e) localized lines: 2, 4, 7

Fig. 2. Example code-snippet illustrating main tool features.

evaluation of infinite-domain variables un-interpreted. Once an error trace is
obtained, backward reachability analysis from the error state to the start state
identifies all the un-interpreted variable operations and employs a constraint
solver or theorem prover to check whether these operations in the error trace
are feasible. In short, feasibility of an error trace is decided by the feasibility of
operations on infinite-domain variables within the trace.

Note that leaving variable operations un-interpreted during forward analy-
sis may lead to an infinite number of search paths in the program due to the
presence of infinite-domain recursion control and loop control parameters. Our
technique addresses this issue by detecting loop-free counter-examples with min-
imal recursion [2] which amounts to summarizing the effect of procedures and
discards all unfoldings of recursion that do not alter the effect. By effect of a
procedure, we mean the valuations of finite-domain variables present in its scope.

Slicing is performed on the counter-example itself using the variables present
in the last statement of the counter-example sequence as the slicing criteria.
The aim is to detect all the statements in the counter-example that directly or
indirectly effect the assertion violation underlying the counter-example; i.e. the
FSS of the counter-example.

Constraint-solver: CLP(R). The operations contained in an FSS are checked
for feasibility using CLP(R), XSB’s built-in constraint solver. We show in [3] that
the feasibility of an FSS implies the existence of a feasible counter-example. An
important aspect of FocusCheck is that all feasible counter-examples are detected
(using the backtracking capabilities of XSB) in one cycle; as such, the typical
abstraction-refinement iteration is avoided.

Localizer. In the presence of uninitialized or input variables in an FSS, feasi-
bility analysis enforces certain constraints on these variables. We refer to these
constraints as assumptions, and generate them by the constraint generator mod-
ule. One of FocusCheck’s distinguishing features is its ability to localize errors
to specific program regions using assumptions [3]. This region is called a neigh-
borhood of error statements (NEST). The technique relies on the presence of
multiple feasible FSSs owing to branching behavior of the program.

Tllustrative Example. The program of Figure 2 illustrates the main features of
the FocusCheck tool. Assume that the property of interest is violated if i=10.
The variables left uninterpreted are x and y and, as such, all possible conditional

branches are explored. The line numbers of the counter-examples generated by
FocusCheck are shown in item (b). The “...” after Lines 3 and 6 represent re-
spectively the line numbers of procedures bigProcedurel() and bigProcedure2(),
which are present in the counter-examples. Since these procedures do not effect
the valuation of i (=10), their line numbers do not appear in the correspond-
ing FSSs given in item (c). The feasibility of the FSSs requires constraints over
the uninterpreted variables and these are given in item (d). Finally, in item (e),
Lines 2, 4, and 7 are classified as a NEST as both branches of the conditional
block starting at Line 2 lead to the violation of the property.

Graphical User Interface. One of the major challenges in designing a debug-
ger is to present the user with just enough information about counter-examples
so that corrective measures can be taken. With this in mind, FocusCheck per-
forms counter-example analysis in order to extract the relevant information from
counter-examples, which it presents to the user via an intuitive GUI.

As discussed above, counter-examples are analyzed and sliced to generate
focus-statement sequences (FSSs), while constraints (assumptions) over unini-
tialized /input variables are identified using a constraint solver. Given a program
and its property, FocusCheck generates all possible feasible FSSs and their associ-
ated assumption sets. FSSs are ranked so that the user can examine conceptually
easier-to-understand FSSs before the more difficult ones. Consequently, the GUI
presents FSSs using a tabbed panel, where the number of tabs is equal to the
total number of FSSs identified by FocusCheck. Moreover, a lower-numbered tab
holds the information of a higher-rank FSS. This enables the user to concentrate
on one FSS without having to look at any other FSS.

An FSS is represented in terms of line numbers and each line number is
mapped to the program statement at that line number in the source code. In-
formation associated with an FSS, e.g. the assumptions on uninitialized/input
variables or the localized block of the program, can be also viewed by the user.
Assumptions are shown in a separate pop-up window, while the localization
information is presented by coloring the corresponding line numbers red.

If the user decides to examine multiple FSSs at a time, she can highlight
the lines of the current FSS and move over to another FSS using the FSS tabs.
For easy viewing, each FSS is color-coded so that the highlights for one FSS
are distinct from another. The lines that are common to multiple FSSs are
highlighted in grey. Furthermore, the user can consult the localization caused by
different FSSs and their corresponding assumptions and analyze multiple FSSs
at the same time.

Tool Demonstration. A number of examples are given in the test suite of the
tool. In the following, we present one of the examples that illustrates the salient
features of our tool. The program merge.c sorts five integers al, a2, a3, a4, and
ab, in only five comparisons given the partial order al>a2, a3>a4, al>a3. The
output of the program is a sorted list of output variables o1, 02, 03, o4, 05 in
descending order. The program is based on the algorithm for finding the median
of a list of numbers in linear time.

—f=fixp

v Help

04=a5,05=az;

eise
iffaz »as)
04=a5,05=a4;
33 iftaz >az)
02=a2,03=a3;
else
02=az,03=az;

yelse{
02=a3,03=a5;
iftaz >ad)

04=a2,05=a4;
else

o4=a4,05=a2;

[(FSS 1 [FSS 2 |
List of all FSSs

. Constrames
local_main_a3 > = local_main_a2
local_main_a5 > = local_main_az2
local_main_al > local_main_a2
local_main_al > local_main_az2
local_main_aZ2 > local_main_a4
local_main_al < local_main_aS

SEYIES

04=a3,05=ad4;

Highlights all
statements in

Assumptions for 1 }

Localize 1

FSS 1

if{as >a2)f

Statements common
to FSS1 and FSS2

0Z=az;
if{aS >al)
ol=a5,02=al;

Show all for 1

J

L
Highlights
| \Llines in RED
Remove Highlights for 1 |

<

els

local_main_al >=local_main_aS5|~
local_main_ol=local_main_a5

line = 57
line = 60

e
ol=al,02=a5;
lelse

0l—al,o02=a2,02=as; line = 60 local_main_o2=local_main_al
line = 67 local_main_ol<local_main_o2
line = 69 local_main_al>local_main_a2
line = 69

a3

local_main
L main,

local_main_al >local
local_main_error=1

a3>local_main_a4
line = 69 _ _

ol=a5.02=al
ifia2 >a4)
o4=a2,05=a4;

els

e
o4=a4,05=a2;

¥

ocal_main_a:
local_main_a3

Constraints for
FSS1 and FSS2

N

Localized Statement Tracing FSS in Code

region for of FSS2 Color code
FSS 1 and for FSS 1
FSS2

Fig. 3. Viewing counter-examples for merge.c

We injected an error into the program by replacing the conditional expression
at Line 57, al > ab, with al < a5. Verification of the modified program with
respect to the assertional property that all output elements should be sorted,
produces two FSSs, the panels for which are labeled FSS1 and FSS2 in Figure 3.
The figure contains a screenshot of the FocusCheck GUI, with the program source
code viewer on the left, and various information pertaining to the currently
selected FSS (FSS1) on the right. In particular, the statements of FSS1 can
be seen in the scrollable text box, each of which is tagged by the corresponding
source-code line number. The color-coding scheme for FSSs deployed by the GUI
enables one to observe that the two FSSs differ in the if-then-else block of Lines
57-60. Noticing this difference, it can be inferred that both branches of the if-
block at Lines 57 60 may be responsible for the assertion violation. Next we see
the difference between constraints! associated with the FSSs are al < a5 and al
>=a5. A quick inspection of the FSSs shows that the conditional expression at
Line 57 is responsible for generation of these constraints.

Furthermore, localization indicates that Lines 57 and 58 of FSS1 and Lines 57
and 60 of FSS2 constitute a neighborhood of error statements (NEST). Com-
bining the results for both FSSs, the error is localized to block extending from
Lines 57 to 60. The intuition behind such localization is based on the follow-

! Variables in constraints are shown by pre-pending information about the scope in
which they are active. For example, a local variable var in procedure func is denoted
local_func_var while a global variable x is denoted global _x.

ing reasoning. Consider the outer block (Lines 45-65) of the localized region
(Lines 57 60). There are no FSSs that go through the then-branch (Lines 46 54)
whereas multiple (in this case exactly two) FSSs go through the else-block (Lines
56-65). Thus our localizer identifies the deviation between a block containing
multiple FSSs from the block having no focus statement and localizes to all the
FSSs in the former block. In short, FocusCheck identifies the deepest nested block
in the program-block hierarchy that exhibits such deviations.

Localization coupled with constraints over variables correctly indicates that
one possible remedy to the error in the program can be achieved by changing
the conditional expression at Line 57 to (al>a5) from (al<a).

Typically, generating counter-examples in terms of the FSSs has been consid-
erably useful in large examples where the length of the counter-example is poten-
tially of the order of size of the program. For example, our experiments with Res-
olution Advisory module of Traffic Collision Avoidance System (TCAS) [6] (ap-
prox. 200 LOC) show that length of FSS is 52 while the corresponding counter-
example length is 89.

3 Discussion

FocusCheck provides a number of facilities aimed at allowing the user to under-
stand and debug errors efficiently. The model checker is developed in a highly
modular fashion with simple interfaces and disintegrates the domain-specific
analysis (such as translators and constraint solvers) from the model checker’s
core. As such, components can be further enhanced and extended independently.
This permits, for example, translators for procedural languages other than C
to be plugged into the tool; or for the reachability analyzer to be coupled with
guided-search or summarization techniques without effecting other modules. The
FocusCheck tool is available from http://www.cs.iastate.edu/~sbasu/focuscheck
along with its documentation and download instructions.

References

1. T. Ball, A. Podelski, and S.K. Rajamani. Relative completeness of abstraction
refinement for software model checking. In Proceedings of TACAS, 2002.

2. S. Basu, D. Saha, Y-J. Lin, and S. A. Smolka. Generation of all counter-examples
for push-down systems. In Proceedings of FORTE, 2003.

3. S.Basu, D. Saha, and S. A. Smolka. Counter-example analysis for Cimple debugging.
In Proceedings of FORTE, 2004.

4. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
Proceedings of POPL, 2002.

5. G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language
and tools for analysis and transformation of C programs.

6. RTCA. Minimum operational performance standards for traffic alert and collision
avoidance system (TCAS) airborne equipment consolidated edition, 1990.

7. H. Saidi. Model checking guided predicate abstraction and analysis. In Proceedings
of SAS, 2000.

8. XSB. The XSB logic programming system. http://xsb.sourceforge.net.

