
Fo
usChe
k: A Tool for Model Che
king andDebugging Sequential C Programs?Curtis W. Keller1, Diptikalyan Saha2, Samik Basu1, and S
ott A. Smolka21 Department of Computer S
ien
e, Iowa State University, AmesEmail:f
wkeller,sbasug�
s.iastate.edu2 Department of Computer S
ien
e, State University of New York, Stony BrookEmail:fdsaha,sasg�
s.sunysb.eduAbstra
t. We present the Fo
usChe
k model-
he
king tool for the ver-i�
ation and easy debugging of assertion violations in sequential C pro-grams. The main fun
tionalities of the tool are the ability to: (a) iden-tify all minimum-re
ursion, loop-free
ounter-examples in a C programusing on-the-
y abstra
tion te
hniques; (b) extra
t fo
us-statement se-quen
es (FSSs) from
ounter-examples, where a fo
us statement is onewhose exe
ution dire
tly or indire
tly
auses the violation underlyinga
ounter-example; (
) dete
t and dis
ard infeasible
ounter-examplesvia feasibility analysis of the
orresponding FSSs; and (d) isolate pro-gram segments that are most likely to harbor the erroneous statements
ausing the
ounter-examples. Fo
usChe
k is equipped with a smartgraphi
al user interfa
e that provides various views of
ounter-examplesin terms of their FSSs, thereby enhan
ing usability and readability ofmodel-
he
king results.1 Introdu
tionSoftware model
he
king typi
ally follows a three-step, iterative pro
ess of ab-stra
tion, veri�
ation, and re�nement [4, 1, 7℄. First, given a program P , a �nite-state abstra
t version P 0 of P is generated. Then, P 0 is veri�ed with respe
t tothe given property and a
ounter-example (sequen
e of program statements) isgenerated should a violation o

ur. Finally,
onstraint solvers and/or theoremprovers are used to
he
k whether the
ounter-example is feasible in the
on-
rete program P ; if not, the abstra
t program P 0 is re�ned. The three steps areiterated until a feasible
ounter-example is identi�ed or the property is satis�ed.Counter-example feasibility analysis requires the user to understand the root-
ause of the
ounter-example, and subsequently isolate and debug the error in theprogram. The presen
e of
omplex data and
ontrol stru
tures in the program
an make su
h analysis an extremely tedious and time-
onsuming pro
ess.To render
ounter-example analysis more tra
table, we present the Fo
usChe
kmodel
he
ker and debugger. Fo
usChe
k takes C programs as input; using amodel
he
ker written in XSB Prolog [8℄ for push-down systems, it identi�es? Resear
h supported in part by ONR grant N000140110967

A
N
A
L
Y
Z
E
R

R
E
A
C
H
A
B
I
L
I
T
Y

S
L
I
C
E
R

T
R
A
N
S
L
A
T
O
R

CONSTRAINT

GENERATOR

ERROR
LOCALIZER

T

O
U

P
U
T

I
N
P
U
T

G

I

U

CHECKER

CLPR

MODEL CHECKER

LOCALIZER

FSSsCounter−
Examples

FRONT−END BACK−END

FEASIBILITYModel
PDS

Property

C Program

Neighborhood
of Error

No feasible
Counter−Example

Feasible FSSs

Assumptions

Fig. 1. Ar
hite
ture of the Fo
usChe
k tool.in one pass all
ounter-examples (if any) in the program under investigation.Generated
ounter-examples are analyzed to identify sli
es in the form of fo
us-statement sequen
es (FSSs): it is the exe
ution of the program statements in theFSSs, and nothing else, that leads to the violation of property [3℄. Feasible FSSsare ranked su
h that those of higher rank are likely to be easier to understandand debug than those of lower rank. Constraints on data variables in ea
h FSSare determined to allow the tool to zoom in on spe
i�
 program segments thatare most likely to harbor the erroneous statements in the program.2 Tool Des
riptionIn this se
tion, we des
ribe the main
omponents of the Fo
usChe
kmodel
he
kerand
ounter-example analyzer. Figure 1 presents the ar
hite
ture of the tool.Translating C-programs to push-down models. The translator uses theCIL toolset [5℄ to transform C programs into XSB Prolog, from whi
h push-downsystem transitions of the form S ! S' are generated. Here S is the statement atthe top of sta
k whi
h, when exe
uted, is repla
ed by S'. Push-down systems area natural
hoi
e for a

urately representing the
ontrol behavior of sequentialprograms as they
apture the exa
t
all-return patterns su
h programs exhibit.Model Che
ker. The
ore of the model
he
ker, written in XSB Prolog, isa rea
hability analyzer for push-down transition systems; this in turn is tightlyintegrated with a sli
er. A model of a program
an exhibit in�nite-state behaviordue to the presen
e of in�nite-domain variables. A typi
al solution to su
h aproblem is to perform forward rea
hability from the initial state by leaving the2

1: ... if (x > 100) {2: if (y < 50) {3: bigPro
edure1();4: i = 10; }5: } else {6: bigPro
edure2();7: i = 10; } } ... (a) uninterpreted variables: x, y(b)
ounter-examples:[1,2,3,...,4℄, [1,2,6,...,7℄(
) FSSs: [1,2,4℄, [1,2,7℄(d) assumptions:[x>100, y<50℄,[x>100,y>=50℄(e) lo
alized lines: 2, 4, 7Fig. 2. Example
ode-snippet illustrating main tool features.evaluation of in�nite-domain variables un-interpreted. On
e an error tra
e isobtained, ba
kward rea
hability analysis from the error state to the start stateidenti�es all the un-interpreted variable operations and employs a
onstraintsolver or theorem prover to
he
k whether these operations in the error tra
eare feasible. In short, feasibility of an error tra
e is de
ided by the feasibility ofoperations on in�nite-domain variables within the tra
e.Note that leaving variable operations un-interpreted during forward analy-sis may lead to an in�nite number of sear
h paths in the program due to thepresen
e of in�nite-domain re
ursion
ontrol and loop
ontrol parameters. Ourte
hnique addresses this issue by dete
ting loop-free
ounter-examples with min-imal re
ursion [2℄ whi
h amounts to summarizing the e�e
t of pro
edures anddis
ards all unfoldings of re
ursion that do not alter the e�e
t. By e�e
t of apro
edure, we mean the valuations of �nite-domain variables present in its s
ope.Sli
ing is performed on the
ounter-example itself using the variables presentin the last statement of the
ounter-example sequen
e as the sli
ing
riteria.The aim is to dete
t all the statements in the
ounter-example that dire
tly orindire
tly e�e
t the assertion violation underlying the
ounter-example; i.e. theFSS of the
ounter-example.Constraint-solver: CLP(R). The operations
ontained in an FSS are
he
kedfor feasibility using CLP(R), XSB's built-in
onstraint solver. We show in [3℄ thatthe feasibility of an FSS implies the existen
e of a feasible
ounter-example. Animportant aspe
t of Fo
usChe
k is that all feasible
ounter-examples are dete
ted(using the ba
ktra
king
apabilities of XSB) in one
y
le; as su
h, the typi
alabstra
tion-re�nement iteration is avoided.Lo
alizer. In the presen
e of uninitialized or input variables in an FSS, feasi-bility analysis enfor
es
ertain
onstraints on these variables. We refer to these
onstraints as assumptions, and generate them by the
onstraint generator mod-ule. One of Fo
usChe
k's distinguishing features is its ability to lo
alize errorsto spe
i�
 program regions using assumptions [3℄. This region is
alled a neigh-borhood of error statements (NEST). The te
hnique relies on the presen
e ofmultiple feasible FSSs owing to bran
hing behavior of the program.Illustrative Example. The program of Figure 2 illustrates the main features ofthe Fo
usChe
k tool. Assume that the property of interest is violated if i=10.The variables left uninterpreted are x and y and, as su
h, all possible
onditional3

bran
hes are explored. The line numbers of the
ounter-examples generated byFo
usChe
k are shown in item (b). The \..." after Lines 3 and 6 represent re-spe
tively the line numbers of pro
edures bigPro
edure1() and bigPro
edure2(),whi
h are present in the
ounter-examples. Sin
e these pro
edures do not e�e
tthe valuation of i (=10), their line numbers do not appear in the
orrespond-ing FSSs given in item (
). The feasibility of the FSSs requires
onstraints overthe uninterpreted variables and these are given in item (d). Finally, in item (e),Lines 2, 4, and 7 are
lassi�ed as a NEST as both bran
hes of the
onditionalblo
k starting at Line 2 lead to the violation of the property.Graphi
al User Interfa
e. One of the major
hallenges in designing a debug-ger is to present the user with just enough information about
ounter-examplesso that
orre
tive measures
an be taken. With this in mind, Fo
usChe
k per-forms
ounter-example analysis in order to extra
t the relevant information from
ounter-examples, whi
h it presents to the user via an intuitive GUI.As dis
ussed above,
ounter-examples are analyzed and sli
ed to generatefo
us-statement sequen
es (FSSs), while
onstraints (assumptions) over unini-tialized/input variables are identi�ed using a
onstraint solver. Given a programand its property, Fo
usChe
k generates all possible feasible FSSs and their asso
i-ated assumption sets. FSSs are ranked so that the user
an examine
on
eptuallyeasier-to-understand FSSs before the more diÆ
ult ones. Consequently, the GUIpresents FSSs using a tabbed panel, where the number of tabs is equal to thetotal number of FSSs identi�ed by Fo
usChe
k. Moreover, a lower-numbered tabholds the information of a higher-rank FSS. This enables the user to
on
entrateon one FSS without having to look at any other FSS.An FSS is represented in terms of line numbers and ea
h line number ismapped to the program statement at that line number in the sour
e
ode. In-formation asso
iated with an FSS, e.g. the assumptions on uninitialized/inputvariables or the lo
alized blo
k of the program,
an be also viewed by the user.Assumptions are shown in a separate pop-up window, while the lo
alizationinformation is presented by
oloring the
orresponding line numbers red.If the user de
ides to examine multiple FSSs at a time, she
an highlightthe lines of the
urrent FSS and move over to another FSS using the FSS tabs.For easy viewing, ea
h FSS is
olor-
oded so that the highlights for one FSSare distin
t from another. The lines that are
ommon to multiple FSSs arehighlighted in grey. Furthermore, the user
an
onsult the lo
alization
aused bydi�erent FSSs and their
orresponding assumptions and analyze multiple FSSsat the same time.Tool Demonstration. A number of examples are given in the test suite of thetool. In the following, we present one of the examples that illustrates the salientfeatures of our tool. The program merge.
 sorts �ve integers a1, a2, a3, a4, anda5, in only �ve
omparisons given the partial order a1>a2, a3>a4, a1>a3. Theoutput of the program is a sorted list of output variables o1, o2, o3, o4, o5 indes
ending order. The program is based on the algorithm for �nding the medianof a list of numbers in linear time. 4

Fig. 3. Viewing
ounter-examples for merge.
We inje
ted an error into the program by repla
ing the
onditional expressionat Line 57, a1 > a5, with a1 < a5. Veri�
ation of the modi�ed program withrespe
t to the assertional property that all output elements should be sorted,produ
es two FSSs, the panels for whi
h are labeled FSS1 and FSS2 in Figure 3.The �gure
ontains a s
reenshot of the Fo
usChe
k GUI, with the program sour
e
ode viewer on the left, and various information pertaining to the
urrentlysele
ted FSS (FSS1) on the right. In parti
ular, the statements of FSS1
anbe seen in the s
rollable text box, ea
h of whi
h is tagged by the
orrespondingsour
e-
ode line number. The
olor-
oding s
heme for FSSs deployed by the GUIenables one to observe that the two FSSs di�er in the if-then-else blo
k of Lines57{60. Noti
ing this di�eren
e, it
an be inferred that both bran
hes of the if-blo
k at Lines 57{60 may be responsible for the assertion violation. Next we seethe di�eren
e between
onstraints1 asso
iated with the FSSs are a1 < a5 and a1>= a5. A qui
k inspe
tion of the FSSs shows that the
onditional expression atLine 57 is responsible for generation of these
onstraints.Furthermore, lo
alization indi
ates that Lines 57 and 58 of FSS1 and Lines 57and 60 of FSS2
onstitute a neighborhood of error statements (NEST). Com-bining the results for both FSSs, the error is lo
alized to blo
k extending fromLines 57 to 60. The intuition behind su
h lo
alization is based on the follow-1 Variables in
onstraints are shown by pre-pending information about the s
ope inwhi
h they are a
tive. For example, a lo
al variable var in pro
edure fun
 is denotedlo
al fun
 var while a global variable x is denoted global x.5

ing reasoning. Consider the outer blo
k (Lines 45{65) of the lo
alized region(Lines 57{60). There are no FSSs that go through the then-bran
h (Lines 46{54)whereas multiple (in this
ase exa
tly two) FSSs go through the else-blo
k (Lines56{65). Thus our lo
alizer identi�es the deviation between a blo
k
ontainingmultiple FSSs from the blo
k having no fo
us statement and lo
alizes to all theFSSs in the former blo
k. In short, Fo
usChe
k identi�es the deepest nested blo
kin the program-blo
k hierar
hy that exhibits su
h deviations.Lo
alization
oupled with
onstraints over variables
orre
tly indi
ates thatone possible remedy to the error in the program
an be a
hieved by
hangingthe
onditional expression at Line 57 to (a1>a5) from (a1<a5).Typi
ally, generating
ounter-examples in terms of the FSSs has been
onsid-erably useful in large examples where the length of the
ounter-example is poten-tially of the order of size of the program. For example, our experiments with Res-olution Advisory module of TraÆ
 Collision Avoidan
e System (TCAS) [6℄ (ap-prox. 200 LOC) show that length of FSS is 52 while the
orresponding
ounter-example length is 89.3 Dis
ussionFo
usChe
k provides a number of fa
ilities aimed at allowing the user to under-stand and debug errors eÆ
iently. The model
he
ker is developed in a highlymodular fashion with simple interfa
es and disintegrates the domain-spe
i�
analysis (su
h as translators and
onstraint solvers) from the model
he
ker's
ore. As su
h,
omponents
an be further enhan
ed and extended independently.This permits, for example, translators for pro
edural languages other than Cto be plugged into the tool; or for the rea
hability analyzer to be
oupled withguided-sear
h or summarization te
hniques without e�e
ting other modules. TheFo
usChe
k tool is available from http://www.
s.iastate.edu/�sbasu/fo
us
he
kalong with its do
umentation and download instru
tions.Referen
es1. T. Ball, A. Podelski, and S.K. Rajamani. Relative
ompleteness of abstra
tionre�nement for software model
he
king. In Pro
eedings of TACAS, 2002.2. S. Basu, D. Saha, Y-J. Lin, and S. A. Smolka. Generation of all
ounter-examplesfor push-down systems. In Pro
eedings of FORTE, 2003.3. S. Basu, D. Saha, and S. A. Smolka. Counter-example analysis for Cimple debugging.In Pro
eedings of FORTE, 2004.4. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstra
tion. InPro
eedings of POPL, 2002.5. G. C. Ne
ula, S. M
Peak, S. P. Rahul, and W. Weimer. CIL: Intermediate languageand tools for analysis and transformation of C programs.6. RTCA. Minimum operational performan
e standards for traÆ
 alert and
ollisionavoidan
e system (TCAS) airborne equipment
onsolidated edition, 1990.7. H. Saidi. Model
he
king guided predi
ate abstra
tion and analysis. In Pro
eedingsof SAS, 2000.8. XSB. The XSB logi
 programming system. http://xsb.sour
eforge.net.6

