
Introduction to DML

R. Sekar

1 / 22

What is DML

Discrete Math Language: a programming language custom-designed for teaching

Discrete Math.

Developed at Stony Brook by the instructor and some of the TAs

Goals:

Provide a simple syntax that closely matches that of math.

Help students understand math concepts better by executing them.

Provide a gateway to programming:

Refine your specification to go from “what” to “how”

Maintain consistency in syntax with established programming languages

2 / 22

What is DML

Discrete Math Language: a programming language custom-designed for teaching

Discrete Math.

Developed at Stony Brook by the instructor and some of the TAs

Goals:

Provide a simple syntax that closely matches that of math.

Help students understand math concepts better by executing them.

Provide a gateway to programming:

Refine your specification to go from “what” to “how”

Maintain consistency in syntax with established programming languages

3 / 22

Key differences from Math

In math, data types are rarely mentioned.

In DML, all values have a type, and the DML interpreter shows it.

In math, we often use symbols that aren’t on your keyboard.

In DML, we map these symbols to those on the keyboard

In math, we often work with infinite sets

DML can only represent finite sets

In math, we rely on proofs to establish the truth or falsehood of propostions

DML uses computation and search, which works only on some propositions

4 / 22

Elements of DML

Values and Types

Base types: integers, reals, booleans, strings

Aggregate types: Sets, lists, tuples, dictionaries

Expressions

Variables

Functions

5 / 22

Integers

6 / 22

Reals

Can be written in:

fixed point, e.g., -1.53, or

scientific format, e.g., 1.53e-27 for 1.53× 10
−27

.

Support the same set of operations as integers, except formod

Conversion to integers

7 / 22

Booleans

Distinct from integers, and can’t be intermixed

Arise mainly from comparisons

but can also define variables and constants of boolean types

Boolean operators

8 / 22

Strings

9 / 22

Sets

Set construction

Sets of consecutive integers: 7..100
Sets with enumerated elements:

{1, 7, 100, 33}
{"Alex", "Dana", "John", "Jennifer"}

DML directly supports most set operations

Dml Symbol Math equivalent Explanation

in ∈ Membership check

union ∪ Set union

inter ∩ Set intersection

subseteq ⊆ Subset operators

- − Set difference

* × Cartesian product

pow ℘ Power Set

10 / 22

Set Builder Notation in Math and DML

Set of squares of odd numbers ≤ 100

Math: E ::= {n2 | n ∈ N ∧ (n < 100) ∧ (n mod 2 = 1)}
DML: E = {n^2 for n in 0..99 if (n % 2 == 1)}

Set of numbers that satisfy a given condition

Math: E ::= {n ∈ N | (n ≤ 100) ∧ (n2 − 41n− 40 > 0)}
DML: E = {n for n in 0..100 if (n^2 - 41*n - 40 > 0)}

Set of Pythagorean triples ≤ 10

Math: E ::= {(x, y, z) ∈ N× N× N | x2 + y2 = z2}
DML: {(x,y,z) for x in 1..10 for y in 1..10 for z in 1..10

if x^2 + y^2 == z^2}

11 / 22

Set Builder Notation in Math and DML

Set of squares of odd numbers ≤ 100

Math: E ::= {n2 | n ∈ N ∧ (n < 100) ∧ (n mod 2 = 1)}
DML: E = {n^2 for n in 0..99 if (n % 2 == 1)}

Set of numbers that satisfy a given condition

Math: E ::= {n ∈ N | (n ≤ 100) ∧ (n2 − 41n− 40 > 0)}
DML: E = {n for n in 0..100 if (n^2 - 41*n - 40 > 0)}

Set of Pythagorean triples ≤ 10

Math: E ::= {(x, y, z) ∈ N× N× N | x2 + y2 = z2}
DML: {(x,y,z) for x in 1..10 for y in 1..10 for z in 1..10

if x^2 + y^2 == z^2}

12 / 22

Set Builder Notation in Math and DML

Set of squares of odd numbers ≤ 100

Math: E ::= {n2 | n ∈ N ∧ (n < 100) ∧ (n mod 2 = 1)}
DML: E = {n^2 for n in 0..99 if (n % 2 == 1)}

Set of numbers that satisfy a given condition

Math: E ::= {n ∈ N | (n ≤ 100) ∧ (n2 − 41n− 40 > 0)}
DML: E = {n for n in 0..100 if (n^2 - 41*n - 40 > 0)}

Set of Pythagorean triples ≤ 10

Math: E ::= {(x, y, z) ∈ N× N× N | x2 + y2 = z2}
DML: {(x,y,z) for x in 1..10 for y in 1..10 for z in 1..10

if x^2 + y^2 == z^2}

13 / 22

DML Lists

Lists are enclosed in square brackets, and are ordered

[1,2] is different from [2,1]

Use built-in function range to construct integer lists:

range(7, 11) = [7, 8, 9, 10]
Unlike sets, the largest element is one less than the higher limit

An optional third parameter specifies the step:

range(7, 17, 5) = [7, 12]

range(7, 18, 5) = [7, 12, 17]

List builder notation is similar to set builder notation:

[x for x in {1,2,3,2,1}] = [1,2,3]

[y for y in range(1,50,2) if y % 7 == 0] = [7,14,21,28,35,42,49]

[5*z+1 for z in 1..6] = [6, 11, 16, 21, 26, 31]

14 / 22

DML Lists

Lists are enclosed in square brackets, and are ordered

[1,2] is different from [2,1]

Use built-in function range to construct integer lists:

range(7, 11) = [7, 8, 9, 10]
Unlike sets, the largest element is one less than the higher limit

An optional third parameter specifies the step:

range(7, 17, 5) = [7, 12]

range(7, 18, 5) = [7, 12, 17]

List builder notation is similar to set builder notation:

[x for x in {1,2,3,2,1}] = [1,2,3]

[y for y in range(1,50,2) if y % 7 == 0] = [7,14,21,28,35,42,49]

[5*z+1 for z in 1..6] = [6, 11, 16, 21, 26, 31]

15 / 22

DML Lists

Lists are enclosed in square brackets, and are ordered

[1,2] is different from [2,1]

Use built-in function range to construct integer lists:

range(7, 11) = [7, 8, 9, 10]
Unlike sets, the largest element is one less than the higher limit

An optional third parameter specifies the step:

range(7, 17, 5) = [7, 12]

range(7, 18, 5) = [7, 12, 17]

List builder notation is similar to set builder notation:

[x for x in {1,2,3,2,1}] = [1,2,3]

[y for y in range(1,50,2) if y % 7 == 0] = [7,14,21,28,35,42,49]

[5*z+1 for z in 1..6] = [6, 11, 16, 21, 26, 31]

16 / 22

DML Lists

Lists are enclosed in square brackets, and are ordered

[1,2] is different from [2,1]

Use built-in function range to construct integer lists:

range(7, 11) = [7, 8, 9, 10]
Unlike sets, the largest element is one less than the higher limit

An optional third parameter specifies the step:

range(7, 17, 5) = [7, 12]

range(7, 18, 5) = [7, 12, 17]

List builder notation is similar to set builder notation:

[x for x in {1,2,3,2,1}] = [1,2,3]

[y for y in range(1,50,2) if y % 7 == 0] = [7,14,21,28,35,42,49]

[5*z+1 for z in 1..6] = [6, 11, 16, 21, 26, 31]
17 / 22

Tuples and Records

Tuples in math (and DML) correspond to cartesian products of sets:

dml> x = (1, ’w’, 2.0)

x:(int, string, real) = (1, "w", 2.0)

Ordering matters in cartesian product (and in DML tuples)

Elements of a tuple can be accessed using a index

dml> x[0]

1

index starts from 0, can’t be a variable or an expression

Records are tuple variants that have field names

dml> y = {ival=1, sval=’w’, rval=2.0}

y:{ival:int, rval:real, sval:string} = {ival=1, rval=2.0, sval="w"}
18 / 22

Dictionaries

19 / 22

Function Definitions and Let Statements

New functions are introduced using the fun keyword:

fun square(x) = x*x

let statements enable a function definition to be broken up into simpler steps:

fun mypoly(x, y) =

let t1 = x*x

t2 = y*y

in t1 + t2

20 / 22

Commonly Used DML Functions

abs: Returns absolute value of a number

avg, sum: Returns the average or sum of a set or list of numbers

concat: Takes a list of lists or strings, concatenates them.

Note: ++ is the binary concatenation operator on lists/strings

len: Returns the length of a set/list/dict/string

insert: Insert new element into a set/list/string

min, max: Returns the min or max element in a set or list.

print: Prints all arguments with spaces between them

printr: Raw print, does not implicitly print spaces or newlines

21 / 22

More Commonly Used DML Functions

rand: Returns a pseudorandom number. Changes on each call.

remove: Remove specified set element or dictionary key. Expensive.

removeat: Remove list element at specified index. Expensive.

sortaz, sortza: Input is a set or list, returns a list in sorted order.

See the DML manual for the full list and additional explanation.

22 / 22

